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Introduction 

This report outlines the different approaches that were taken in 

solving the minimum vertex cover problem where the minimum 

set of vertices that includes at least one endpoint of every edge of 

the graph is to be found. To solve this problem, four different 

approaches were taken: a branch-and-bound algorithm, an 

approximation algorithm, and two local search algorithms. The 

quality of each approach was then evaluated by assessing the 

relative error from the given optimal solution and the runtime. 

Our results have shown that different approaches yield a variety of 

results regarding efficiency and quality. Different approaches 

yielded different results in regard to these heuristics. The brand-

and-bound approach sacrifices runtime in order to guarantee 

optimality, however sometimes the cutoff time is reached without 

any solutions discovered. On the other hand, the approximation 

and local search approaches do not guarantee optimality but do 

find solutions with small relative error in a reasonable amount of 

time. Between these latter three algorithms, it is evidenced that 

generally an increased runtime leads to a better-quality solution, 

and vice versa. Quantitative information on the results obtained 

can be found under Empirical Evaluation. 

Problem Definition 

The minimum vertex cover (MVC) problem is a basic 

combinatorial optimization problem. A vertex cover of a graph is 

a set of vertices that includes at least one endpoint of every edge 

of the graph. Thus, what the MVC problem attempts to find is the 

minimum set of vertices possible that include at least one endpoint 

of every edge in the graph. This problem has numerous 

applications in many fields from biology, supply chain 

engineering, to network security. The process of finding the 

minimum vertex cover is a combinatorial optimization problem 

because it consists of finding the different combinations of 

vertices that satisfy the vertex cover condition. This can be found 

through a myriad of algorithms leading to solutions of different 

levels of quality. Quality can be measured and evaluated via 

runtime and relative error from the optimal solution.  

Related Work 

Due to the prominence of the MVC problem, there are various 

existing discussions on the different ways this problem can be 

solved. One method consisted of performing a local search where 

the problem is viewed from the perspective of its dual problem: 

the Maximum Independent Set, where an independent set of graph 

G with vertices (V) and edges (E) is a subset of the vertices whose 

elements are non-adjacent [1]. This was done in two ways. The 

first approach determined in linear time whether the optimal 

solution can be improved by replacing a single vertex with two 

others that are non-adjacent to the vertex being removed. The 

second approach determined in O(mΔ) time (Δ is the highest 

degree in the graph) whether there are two vertices in the 

candidate solution that can be replaced by a set of 3 vertices. 

Another approach worked on designing more efficient local 

search algorithms by addressing two drawbacks that local search 

approaches often have: selecting a pair of vertices that are 

exchanged simultaneously and not having a strategy to decrease 

edge weighting techniques [2]. Thus, to combat this, the paper 

proposes a 2-stage exchange strategy and incorporates edge 

weighting without forgetting. In addition, the edge weights were 

decreased periodically. These minor adjustments helped to 

decrease the run time for local search algorithms. Another paper 

consisted of 6 different approximation algorithms for solving the 

MVC problem. These approaches are mostly greedy based and 

range from using commonly known approaches such as maximum 

degree greedy, depth first search, edge deletion, and greedy 

independent cover [3]. The benefit of these approaches is that an 

approximation ratio for each approach can be calculated which 

gives one a quality guarantee of the respective algorithm.  

Algorithms 

Approach #1: Branch-and-Bound 

The branch-and-bound approach is generally used for solving 

combinatorial optimization problems. Due to the nature of these 

problems, they are often exponential in terms of time complexity 

because of the worst-case scenario that would require one to 

explore all permutations. In the branch-and-bound approach, we 
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search through the exponentially sized search space of all possible 

solutions, but we maintain a global upper bound on the cost of the 

optimal solution in addition to lower bounds on the costs of the 

solutions that can come from each partial configuration/search 

node. We then use those bounds to prune the search space of 

partial solutions that are no longer worth considering, with the 

hope that in practice the algorithm can work reasonably well on 

small problem instances. For our algorithm for the MVC problem, 

we calculate the bounds as follows: 

• Global upper bound: The number of vertices in the 

smallest vertex cover that has been found so far. 

Initialized to the number of vertices in the graph. 

• Lower bound for each partial solution’s possible 

outcome: The number of vertices in the partial solution 

plus the size of a maximal matching on the remaining 

uncovered subgraph. The maximal matching is 

calculated greedily in O(|E|) time. 

Pseudocode for the general branch-and-bound approach is shown 

in Figure 1. In addition to calculating bounds, we also had to 

clearly define subproblems, partial solutions, and the “Choose”, 

“Expand”, and “Check” portions of the pseudocode from the class 

lectures. Those five key things are described below: 

• Partial solution: A set of vertices that is not yet a vertex 

cover. 

• Subproblem: A subgraph of the input graph that is not 

yet covered by the partial solution. 

• “Choose”: The partial solution with the highest lower 

bound; in our case, this is the partial solution that has 

the largest size when combined with the size of the 

maximal matching on the remaining uncovered 

subgraph. 

• “Expand”: Given a partial solution, we expand it by 

selecting a new vertex we have not yet looked at and 

choose whether to include that vertex in the vertex 

cover. This gives two new partial solutions nodes: one 

where the new vertex is included and one where it is not 

included. 

• “Check”: Every subset of the vertices in the graph is a 

valid partial solution, so there is no work to be done at 

the “Check” step. 

One additional thing to note is that we consider adding vertices to 

the vertex cover starting with the highest degree vertices first 

since they are likely to cover more uncovered edges. 

 

Figure 1: Pseudocode of Branch-and-Bound Approach 

Time Complexity Analysis: Even though we can prune 

unpromising search nodes, the number of possible configurations 

explored is still asymptotically exponential in the number of 

vertices in the graph. In addition, for each configuration explored, 

we have to determine the remaining uncovered subgraph given the 

vertices that make up the partial solution, which takes O(|V| + |E|) 

time, and we also calculate a maximal matching on that subgraph, 

which takes O(|E|) time. Thus, the runtime is O((|V| + |E|) * 2^|V|). 

Space Complexity Analysis: For each search node, we store an 

integer representing the quality of the solution (the number of 

vertices in the vertex cover) and a dictionary of size O(|V|) that 

tells us which vertices are in the vertex cover. The graph itself is 

only loaded into memory once, and the subgraphs that we create 

when exploring each search node are actually just views of the 

subgraphs based on the original graph object, saving a lot of 

memory space. Thus, the space complexity is O(|V| * 2^|V|). 

The benefit of using a branch-and-bound algorithm is that it 

guarantees an optimal solution so long as we run it for long 

enough. We set an upper time limit of runtime to 10 minutes, so 

after this time has elapsed the program is terminated and output 

the best solution that we have found so far. The downfall is that 

we are not necessarily able to find the optimal solution (or even 

any solution for some of the larger graphs) within 10 minutes. If 

we do not set a time limit to the program, we will eventually find 

the optimal solution. However, if quality is a top priority, the 

branch-and-bound algorithm is a viable option. 

One interesting implementation detail worth mentioning is that to 

avoid storing a graph object representing the remaining uncovered 

subgraph in each frontier search node, our algorithm calculates the 

uncovered subgraph upon visiting each node as explained in the 

space complexity analysis section. We tried storing the subgraphs 

in the frontier search nodes at first. Even though it made the 

algorithm faster, we found that on a machine with 8 GB of RAM 

we often ran out of RAM when running the algorithm on the 

function BNB( G ) 

Given graph G = ( V, E )   

 F  { (∅ , G) } 

 B   ( , F)  

 While F ≠ ∅ do 

  Choose ( X, Y) in F – the most promising solution 

  Expand (X, Y)  

  Make new configurations  from (X, Y) → (Xi, Yi) 

  For each new configuration in (Xi, Yi) do 

   Check (Xi, Yi) 

   If solution found then 

    If cost(Xi) < B cost then 

     B   (cost(Xi), (Xi, Yi)) 

   Else  

    If lb(Xi) < B cost then 

     F   F  {( Xi, Yi)}   

Return B 



 

larger graphs. Not storing those extra graph objects prevented the 

algorithm from using up all of the 8 GB of RAM, but it also 

slowed it down, so this was an interesting learning experience and 

a good example of a time-space trade-off in algorithm design. 

Approach #2: Approximation Algorithm - 

Maximum Degree Greedy 

The maximum degree greedy approach consists taking an input 

that is a graph object. From there, one iteratively selects a vertex 

with the graph with the maximum degree. Then one removes the 

vertex from the from the graph in question and adds such vertex to 

the solution. This process continues until there are no remaining 

vertices in the graph of question. The approximation factor, A, a 

constant ratio bound, for this algorithm is the harmonic series Σ1/i 

from i = 1 to n, where n is the maximum degree of all vertices of 

the graph. So, C ≤ A*C’, where C’ is the optimal value of vertex 

cover. Below is the pseudocode for such approach. 

 

Figure 2: Pseudocode of Maximum Degree Approach  

The Maximum Degree Approach algorithm doesn’t guarantee 

optimality under any circumstances. However, it does guarantee a 

solution that is within the approximation factor A of the optimal 

solution. Furthermore, a benefit of an approximation algorithm is 

that it runs much faster compared to other methods, as it can 

terminate on its own in a relatively short amount of time. This 

shows how quality is sacrificed for the sake of efficiency in time, 

which depending on the situation at hand could be a better option. 

The algorithm worst-case approximation ratio is H(Δ), with H(n) 

being the harmonic series, (H(n) = ln(n) + 0.57) and Δ being the 

maximum degree of the graph. 

Approach #3: Stochastic Local Search 

Stochastic Local search is one of the more commonly used 

methods to solve combinatorial optimization problems. The 

general approach of the local search is to first initiate search space 

for the problem in question. From there, various methods are used 

to create an initial solution. Then, one evaluates the initial solution 

using an evaluation function. This then allows you to iteratively 

move among potential solutions to others and evaluate the 

performance of every solution. The pseudocode for this approach 

can be seen below.   

 

Figure 3: Pseudocode of Stochastic Local Search Approach  

The initial construction of the vertex cover for this approach was 

created using the Maximum Degree Greedy approach. Once an 

initial solution is found, the local search approach iterates through 

this initial vertex cover and randomly removes vertices until it is 

no longer a vertex cover. Then, an exit vertex from C is selected 

in which the vertex is one that produces the minimum increase in 

cost. The way cost was calculated was that given the total graph G 

and candidate solution in question C, calculate the total number of 

edges that are not covered by C. Once this exiting vertex is 

identified, it is removed, and an entering vertex is put into the 

candidate solution C. This entering vertex is randomly selected 

from the set of vertices that are not in the candidate solution C. 

This process is then repeated until either the elapsed time is past 

the cutoff or the approach reaches the optimum. The advantage 

with this approach is that it works relatively fast and well for most 

of the graphs given. However, when the graph size is larger there 

is a chance that this approach can get stuck at local optimums. In 

order to combat this, the search step was randomized by selecting 

a random entering vertex which allows for worser steps to occur. 

This in turn helps to improve the robustness and performance of 

the approach despite still not guaranteeing the optimal result. 

Time Complexity Analysis: The time complexity based on our 

input G = (V, E) would largely be dominated by the initial 

construction of the VC through a maximum degree greedy 

approach, which would, at worst case, go through each vertex and 

sort each iteration, resulting in a O((|V|^2)log|V|) time complexity. 

Selecting an exiting vertex from the VC would take O(|V||E|) to 

analyze the cost of removing each possible vertex from the VC. 

Selecting an entering vertex and checking the validity of the VC 

takes O(|E|) to check each edge. Thus, initial construction of the 

VC dominates time complexity. However, for the majority of 

cases, the overall time complexity of the Stochastic Local Search 

algorithm will be defined by the cutoff time, which across 

different graph instances should remain constant (for our 

experimentation this was set to 600 seconds). 

Space Complexity Analysis: In our code, we originally created the 

graph data structure with |V| vertices and |E| edges resulting in 

O(|V|+ |E|) space taken up. The vertex cover was stored in a set 

data structure and occasionally copied to test exiting vertices, so it 

function MDG( G ) 

Given graph G = ( V, E )   

 C  ∅ 

 While E ≠ ∅ do 

  Select vertex u with a maximum degree 

  V   V – u 

  C   V  u 

Return C 

 

function StochasticLocalSearch( G ) 

Given graph G = ( V, E )   

 C  MDG( G ) 

 While elapsed time < cutoff do 

  While C is a vertex cover then 

   C*  C 

   Randomly remove one vertex from C 

  u  Select exiting vertex from C 

  C  C \ {u} 

  v  Select entering vertex from V \ C 

  C   C  {v} 

 Return C* 



 

 

 

took up an addition O(|V|) space. So overall, space is dominated 

by the graph itself of O(|V||E|), as no major additional storage is 

present that would affect the space. 

Approach #4: Simulated Annealing Local Search 

In this approach, we implement an efficient simulated annealing 

algorithm inspired from the paper [4] for the Minimum Vertex 

Cover problem. Simulated Annealing can be considered as a 

version of an iterative improvement algorithm, which allows 

various types of transitions that may be in the opposite direction 

of the goal. Generally, in Simulated Annealing implementation, 

the temperature progressively decreases from an initial positive 

value to zero. At each time step, the algorithm randomly selects a 

solution close to the current one, measures its quality, and moves 

to it according to the temperature-dependent probabilities of 

selecting better or worse solutions, which during the search 

respectively remain at 1 (or positive) and decrease towards zero. 

[5] 

In our problem, the goal is minimizing the size of vertex cover set. 

So, in each iteration, we surely step toward decreasing the cost 

function, and sometimes with a probability that depends on the 

temperature and the difference in cost, we may step toward 

increasing the cost function, hoping that our algorithm can get out 

of a possible local optimum. The pseudocode for this approach 

can be seen in the figure below:  

 

Figure 4: Pseudocode of SA Local Search Approach  

In our implementation, the state of node i can be determined by 

whether it is added to the vertex cover or not. We show this state 

of nodes with a dictionary, containing the node numbers as keys 

and 0 or 1 as values. First, we create our initial solution by 

randomly selecting the nodes in the graph and them to our 

solution until we have a vertex cover. Then, we specify the 

parameters of the Simulated Annealing algorithm, e.g., initial and 

final temperature, etc. At each time, we select a random node 

from the graph and check if it is in vertex cover or not. If it is not 

present in VC, adding it would increase the cost function by the 

degree of the node, and we add it with the probability e- cost_difference 

/ T. If it is present in VC, we delete it only if the deletion of the 

node doesn’t cause any edges to get uncovered. We stop the 

algorithm if the temperature is lower than a threshold, if we 

exceed the cutoff-time specified for running the algorithm, or if 

we do more than 10000 iterations without improving the solution. 

Throughout the running process, we keep the improved solutions 

and their time in the ‘.trace’ file of the graph. We repeat this 

process for 10 random seeds and get the average of our results as 

seen in table 5. As for the parameters of SA algorithm, since we 

had a good initial solution, we wanted to penalize adding too 

many nodes to the graph, and since removing each node from the 

solution was safe, we wanted to encourage the algorithm to find 

ways to remove nodes while still maintaining the vertex cover. 

Therefore, we started from relatively low temperature, which 

helped our algorithm avoid adding too many nodes to vertex cover 

set by bringing down the probability of going towards worse cost.  

Time Complexity Analysis: Again, the time complexity of this 

algorithm would be dominated by the construction of the initial 

solution with a maximum degree greedy approach O(|V|2 log |V|). 

Also, since we have some thresholds on time and number of 

iterations, those would impact our running time. But in the worst 

case, at each iteration, we pick a random node from our graph G, 

and either add it to the VC or not. In case we add it, the operation 

is simply O(1), and if we want to remove it, we need to do a check 

on the VC set to make sure it covers all the edges. For that, we 

loop on all the edges on the graph. Therefore, the overall cost for 

the algorithm is O(|V|2 log |V|) + O(|V| . |E|).  

Space Complexity Analysis: For keeping track of VC nodes, we 

keep a dictionary of size |V|, and we need to iterate over all the 

edges of the graph. Thus, the space complexity of this algorithm is 

O(|V| + |E|). 

Empirical Evaluation  

The following table helps to show the different platforms that 

were used for the different approaches.  

 

Table 1: Platform Overview  

 

Processor RAM 
Platform approaches 

used 

2.6 GHz 6-Core Intel 

Core i7 
16 GB 3 

1.4 GHz Quad-Core 

Intel Core i5 
8 GB 1 

2.3 GHz Quad-Core 

Intel Core i5 
8 GB 3 

2.6 GHz Intel Core i5 8 GB 2,4 

 

function SA Local Search( G ) 

Given graph G = ( V, E )   

 Temp 1 

 Final_temp .0000001 

 alpha  .999 

 C  MDG( G ) 

 While temp < final_temp do 

  u  Select random vertex from G 

  if u is not in C then 

   delta  degree of u 

   p  e(-delta/current_temp) 

   if  p > random number between 0 and 1 

    C  C  {u} 

  Else 

   C*  C \ {u} 

   If C* is a vertex cover 

    C  C* 

  Temp  Temp * alpha 

 Return C 



 

This table helps to give perspective when evaluating the results 

obtained by different approaches as the platform these approaches 

are being used on can affect the solution due to the cutoff time 

constraint. These four approaches were evaluated in terms of 

runtime and relative error where relative error is the percent 

difference of each respective approach and the given optimal 

value. For the case of the local search approaches, 10 separate 

runs with different random seeds were performed for each 

respective graph. These results were then averaged for each graph. 

Below one can see the results that were obtained with each 

approach.  

 

Table 2: Branch-and-Bound Approach Results 

 

Branch-and-Bound Results 

Dataset 
Time 

(sec) 
VC Value Relative Error 

jazz.graph 195.37 182 0.15 

karate.graph 1.23 14 0.00 

football.graph 51.47 105 0.12 

as-22july06.graph >600 - 1.00 

hep-th.graph >600 - 1.00 

star.graph >600 - 1.00 

star2.graph >600 - 1.00 

netscience.graph 307.17  1453 0.62 

email.graph 588.73  873 0.47 

delaunay n10.graph 260.62 935 0.33 

power.graph >600 - 1.00 

 

Table 3: Maximum Degree Greedy Approach Results 

 

Approximation Algorithm – Maximum Degree Greedy Results 

Dataset 
Time 

(sec) 

VC Value Relative Error 

jazz.graph 0.018 160 0.013 

karate.graph 0.00051 14 0.00 

football.graph 0.017 96 0.021 

as-22july06.graph 88.063 3312 0.0027 

hep-th.graph 24.48 3947 0.0053 

star.graph 122.42 7366 0.067 

star2.graph 74.55 4677 0.030 

netscience.graph 0.82 899 0.00 

email.graph 0.46 605 0.019 

delaunay n10.graph 0.24 740 0.053 

power.graph 8.26 2272 0.031 

 

 

 

 

 

 

Table 4: Stochastic Local Search Approach Results 

 

Local Search Approach #1 (Stochastic) Results 

Dataset 
Time 

(sec) 
VC Value Relative Error 

jazz.graph 12.74 158.10 0.00063 

karate.graph 0.00 14 0.00 

football.graph 1.97 95 0.011 

as-22july06.graph 92.25 3309.00 0.0018 

hep-th.graph 162.32 3937.60 0.0030 

star.graph 554.68 7035.30 0.019 

star2.graph 566.64 4665.90 0.027 

netscience.graph 0.58 899 0.00 

email.graph 107.86 598.90 0.0082 

delaunay n10.graph 129.67 717.67 0.021 

power.graph 531.49 2239.70 0.017 

 

Table 5: Simulated Annealing Local Search Approach Results 

 

Local Search Approach #2 (Simulated Annealing) Results 

Dataset 
Time 

(sec) 
VC Value Relative Error 

jazz.graph 0.53 160 0.012 

karate.graph 0.25 14 0.000 

football.graph 0.40 96 0.021 

as-22july06.graph 105.01 3387.66 0.035 

hep-th.graph 50.51 4235 0.078 

star.graph 144.18 7060.1 0.022 

star2.graph 117.23 4643.5 0.022 

netscience.graph 4.17 899.3 0.000 

email.graph 4.17 602 0.013 

delaunay n10.graph 3.64 730.1 0.038 

power.graph 37.03 2251.8 0.022 

 

One interesting point that can be drawn from these results are that 

one can obtain a lower bound on the solution quality by looking 

for the highest relative error in approximation approach results.  

This would be a lower bound because one can rule out any 

solution with a relative error higher than the one obtained from 

implementing the approaches. Furthermore, quality runtime 

distribution plots (QRTD), solution quality distribution plots 

(SQD) ,and boxplots were created for the local search approaches 

to help convey the behavior of the respective approaches. These 

plots were created for two graphs in question: ‘star2.graph’ and 

‘power.graph’. The plots can be seen in the subsequent figures 

below.  



 

 

 

 
Figure 5: QRTD Plot of Power Graph Using Stochastic Local 

Search over 10 Runs 

 
Figure 6: QRTD Plot of Star2 Graph Using Stochastic Local 

Search over 10 Runs 

 

 
Figure 7: SQD Plot of Power Graph Using Stochastic Local 

Search over 10 Runs 

 

 

 
Figure 8: SQD Plot of Star2 Graph Using Stochastic Local Search 

over 10 Runs 

 

 
Figure 9: Boxplot of Runtime for Star2 and Power Graphs Using 

Stochastic Local Search Approach over 10 Runs 

 



 

 
Figure 10: QRTD Plot of Power Graph Using SA Local Search 

over 10 Runs 

 

 
Figure 11: QRTD Plot of Star2 Graph Using SA Local Search 

over 10 Runs 

 
Figure 12: SQD Plot of Power Graph Using SA Local Search over 

10 Runs 

 
Figure 13: SQD Plot of Star2 Graph Using SA Local Search over 

10 Runs 

 

 
Figure 14: Boxplot of Runtime for Star2 and Power Graphs Using 

Simulated-Annealing Local Search Approach over 10 Runs 

 

These figures help to illustrate that the two local search 

approaches were able to get close the optimal solution while still 

not reaching the cutoff time of 10 minutes. Furthermore, they help 

to show the variation in runtimes for different runs (and random 

seeds) as seen by the boxplots. 



 

 

 

Discussion 

From our experimentation, it is shown that different algorithms 

yield different results in regard to runtime efficiency and optimal 

quality. The branch-and-bound approach results help to confirm 

and challenge prior knowledge about the advantages and 

disadvantages of such an approach. For several of the larger 

graphs, the approach failed to find any solution before the cutoff 

time of 10 minutes elapsed. However, for the graphs for which the 

algorithm found a solution before the cutoff time, the algorithm 

took longer than the approximation and local search approaches. 

The approximation approach yielded quick results as it operates in 

polynomial time. However, the VC sizes it produced were far 

from the optimum in comparison to the local search approaches. 

This result is expected, as approximation algorithms work to find 

a solution quickly but do not guarantee the optimal solution.  

In the stochastic local search approach, one can see that the 

solution performs best in terms of relative error but at the expense 

of a longer runtime. In addition, as one can see in the results the 

larger graphs tend to produce a higher relative error. This can be 

due to the increase in combinatorial possibilities because of a 

larger search space. Although the entering vertex was selected at 

random, the approach often would plateau at a local optimum. An 

approach in fixing this problem would be to introduce a 

probability factor when deciding an entering vertex so we would 

have the possibility of exploring other optimums. In addition, a 

use of a different data structure that evaluates whether the 

candidate solution is a vertex cover would decrease the time 

complexity of the approach, providing more simplicity in the 

analyzation through the program and more efficiency in the 

runtime of the code. While the algorithm will terminate only 

based on the cutoff time we set for the code, we will yield better 

results with the progression of time. 

In the Simulated Annealing implementation results, we can see 

that our solution can take a longer time to converge for large 

graphs. This is normal due to the huge size of the search space. 

However, the good side of this approach is the relatively shorter 

time to return a solution compared to other approaches which can 

take much longer, and the solutions created in this short period of 

time also look good. Giving the algorithm a good enough initial 

solution was important in reaching the local optimum fast. We 

still can improve our solution, especially for the large graphs, if 

we find a way to check if we still have a vertex cover after 

removing a node efficiently. Also, since there is a limit on 

removing nodes and improving the solution, sometimes the 

algorithm doesn’t even change the initial solution. This is fair 

because as mentioned, our initial solution is relatively close to the 

optimal solution. 

Conclusion 

From the development of our algorithms, it is evidenced that 

different approaches to solve combinatorial optimization problems 

lead to different results in efficiency and quality. These different 

approaches serve as the general methods to cope with NP-

Complete problems like the MVC. The Branch and Bound 

algorithm sacrifices runtime for guaranteeing optimality as long as 

the algorithm finishes, while the Approximation and Local Search 

algorithms show improvements by sacrificing quality for the 

solution, with the Approximation algorithm guaranteeing a bound 

on the solution. Depending on circumstances and goals of an 

objective, certain approaches would be preferrable over others in 

different cases. However, when just evaluating the performance of 

the approaches as to which one has the best relative error, the 

stochastic local search approach performs best. The MVC 

optimization problem serves as one of the most applicable 

problems in our society today, with several applications in modern 

industry and research. In the future, this will only become a more 

relevant scenario for more applications. The approaches we’ve 

presented to solve the MVC problem are imperative towards 

solving complex combinatorial optimization problems in the 

world today and in the future. 
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