
CSE 6140 Fall 2020 Project

Minimum Vertex Cover

Kiarash Ahmadi
 Georgia Institute of

Technology

 Atlanta, Georgia,

United States of

America
 kahmadi3@gatech.edu

Jason Lu

 Georgia Institute of

Technology

 Atlanta, Georgia,

United States of

America

 jlu367@gatech.edu

Kipp Morris

Georgia Institute of

Technology

 Atlanta, Georgia,

United States of

America
 kmorris9@gatech.edu

Sonia Sargolzaei
Georgia Institute of

Technology
 Atlanta, Georgia,

United States of

America
ssargolzaei7@gatech.ed

u

Introduction

This report outlines the different approaches that were taken in

solving the minimum vertex cover problem where the minimum

set of vertices that includes at least one endpoint of every edge of

the graph is to be found. To solve this problem, four different

approaches were taken: a branch-and-bound algorithm, an

approximation algorithm, and two local search algorithms. The

quality of each approach was then evaluated by assessing the

relative error from the given optimal solution and the runtime.

Our results have shown that different approaches yield a variety of

results regarding efficiency and quality. Different approaches

yielded different results in regard to these heuristics. The brand-

and-bound approach sacrifices runtime in order to guarantee

optimality, however sometimes the cutoff time is reached without

any solutions discovered. On the other hand, the approximation

and local search approaches do not guarantee optimality but do

find solutions with small relative error in a reasonable amount of

time. Between these latter three algorithms, it is evidenced that

generally an increased runtime leads to a better-quality solution,

and vice versa. Quantitative information on the results obtained

can be found under Empirical Evaluation.

Problem Definition

The minimum vertex cover (MVC) problem is a basic

combinatorial optimization problem. A vertex cover of a graph is

a set of vertices that includes at least one endpoint of every edge

of the graph. Thus, what the MVC problem attempts to find is the

minimum set of vertices possible that include at least one endpoint

of every edge in the graph. This problem has numerous

applications in many fields from biology, supply chain

engineering, to network security. The process of finding the

minimum vertex cover is a combinatorial optimization problem

because it consists of finding the different combinations of

vertices that satisfy the vertex cover condition. This can be found

through a myriad of algorithms leading to solutions of different

levels of quality. Quality can be measured and evaluated via

runtime and relative error from the optimal solution.

Related Work

Due to the prominence of the MVC problem, there are various

existing discussions on the different ways this problem can be

solved. One method consisted of performing a local search where

the problem is viewed from the perspective of its dual problem:

the Maximum Independent Set, where an independent set of graph

G with vertices (V) and edges (E) is a subset of the vertices whose

elements are non-adjacent [1]. This was done in two ways. The

first approach determined in linear time whether the optimal

solution can be improved by replacing a single vertex with two

others that are non-adjacent to the vertex being removed. The

second approach determined in O(mΔ) time (Δ is the highest

degree in the graph) whether there are two vertices in the

candidate solution that can be replaced by a set of 3 vertices.

Another approach worked on designing more efficient local

search algorithms by addressing two drawbacks that local search

approaches often have: selecting a pair of vertices that are

exchanged simultaneously and not having a strategy to decrease

edge weighting techniques [2]. Thus, to combat this, the paper

proposes a 2-stage exchange strategy and incorporates edge

weighting without forgetting. In addition, the edge weights were

decreased periodically. These minor adjustments helped to

decrease the run time for local search algorithms. Another paper

consisted of 6 different approximation algorithms for solving the

MVC problem. These approaches are mostly greedy based and

range from using commonly known approaches such as maximum

degree greedy, depth first search, edge deletion, and greedy

independent cover [3]. The benefit of these approaches is that an

approximation ratio for each approach can be calculated which

gives one a quality guarantee of the respective algorithm.

Algorithms

Approach #1: Branch-and-Bound

The branch-and-bound approach is generally used for solving

combinatorial optimization problems. Due to the nature of these

problems, they are often exponential in terms of time complexity

because of the worst-case scenario that would require one to

explore all permutations. In the branch-and-bound approach, we

mailto:kahmadi3@gatech.edu
mailto:kmorris9@gatech.edu

search through the exponentially sized search space of all possible

solutions, but we maintain a global upper bound on the cost of the

optimal solution in addition to lower bounds on the costs of the

solutions that can come from each partial configuration/search

node. We then use those bounds to prune the search space of

partial solutions that are no longer worth considering, with the

hope that in practice the algorithm can work reasonably well on

small problem instances. For our algorithm for the MVC problem,

we calculate the bounds as follows:

• Global upper bound: The number of vertices in the

smallest vertex cover that has been found so far.

Initialized to the number of vertices in the graph.

• Lower bound for each partial solution’s possible

outcome: The number of vertices in the partial solution

plus the size of a maximal matching on the remaining

uncovered subgraph. The maximal matching is

calculated greedily in O(|E|) time.

Pseudocode for the general branch-and-bound approach is shown

in Figure 1. In addition to calculating bounds, we also had to

clearly define subproblems, partial solutions, and the “Choose”,

“Expand”, and “Check” portions of the pseudocode from the class

lectures. Those five key things are described below:

• Partial solution: A set of vertices that is not yet a vertex

cover.

• Subproblem: A subgraph of the input graph that is not

yet covered by the partial solution.

• “Choose”: The partial solution with the highest lower

bound; in our case, this is the partial solution that has

the largest size when combined with the size of the

maximal matching on the remaining uncovered

subgraph.

• “Expand”: Given a partial solution, we expand it by

selecting a new vertex we have not yet looked at and

choose whether to include that vertex in the vertex

cover. This gives two new partial solutions nodes: one

where the new vertex is included and one where it is not

included.

• “Check”: Every subset of the vertices in the graph is a

valid partial solution, so there is no work to be done at

the “Check” step.

One additional thing to note is that we consider adding vertices to

the vertex cover starting with the highest degree vertices first

since they are likely to cover more uncovered edges.

Figure 1: Pseudocode of Branch-and-Bound Approach

Time Complexity Analysis: Even though we can prune

unpromising search nodes, the number of possible configurations

explored is still asymptotically exponential in the number of

vertices in the graph. In addition, for each configuration explored,

we have to determine the remaining uncovered subgraph given the

vertices that make up the partial solution, which takes O(|V| + |E|)

time, and we also calculate a maximal matching on that subgraph,

which takes O(|E|) time. Thus, the runtime is O((|V| + |E|) * 2^|V|).

Space Complexity Analysis: For each search node, we store an

integer representing the quality of the solution (the number of

vertices in the vertex cover) and a dictionary of size O(|V|) that

tells us which vertices are in the vertex cover. The graph itself is

only loaded into memory once, and the subgraphs that we create

when exploring each search node are actually just views of the

subgraphs based on the original graph object, saving a lot of

memory space. Thus, the space complexity is O(|V| * 2^|V|).

The benefit of using a branch-and-bound algorithm is that it

guarantees an optimal solution so long as we run it for long

enough. We set an upper time limit of runtime to 10 minutes, so

after this time has elapsed the program is terminated and output

the best solution that we have found so far. The downfall is that

we are not necessarily able to find the optimal solution (or even

any solution for some of the larger graphs) within 10 minutes. If

we do not set a time limit to the program, we will eventually find

the optimal solution. However, if quality is a top priority, the

branch-and-bound algorithm is a viable option.

One interesting implementation detail worth mentioning is that to

avoid storing a graph object representing the remaining uncovered

subgraph in each frontier search node, our algorithm calculates the

uncovered subgraph upon visiting each node as explained in the

space complexity analysis section. We tried storing the subgraphs

in the frontier search nodes at first. Even though it made the

algorithm faster, we found that on a machine with 8 GB of RAM

we often ran out of RAM when running the algorithm on the

function BNB(G)

Given graph G = (V, E)

 F  { (∅ , G) }

 B  ( , F)

 While F ≠ ∅ do

 Choose (X, Y) in F – the most promising solution

 Expand (X, Y)

 Make new configurations from (X, Y) → (Xi, Yi)

 For each new configuration in (Xi, Yi) do

 Check (Xi, Yi)

 If solution found then

 If cost(Xi) < B cost then

 B  (cost(Xi), (Xi, Yi))

 Else

 If lb(Xi) < B cost then

 F  F  {(Xi, Yi)}

Return B

larger graphs. Not storing those extra graph objects prevented the

algorithm from using up all of the 8 GB of RAM, but it also

slowed it down, so this was an interesting learning experience and

a good example of a time-space trade-off in algorithm design.

Approach #2: Approximation Algorithm -

Maximum Degree Greedy

The maximum degree greedy approach consists taking an input

that is a graph object. From there, one iteratively selects a vertex

with the graph with the maximum degree. Then one removes the

vertex from the from the graph in question and adds such vertex to

the solution. This process continues until there are no remaining

vertices in the graph of question. The approximation factor, A, a

constant ratio bound, for this algorithm is the harmonic series Σ1/i

from i = 1 to n, where n is the maximum degree of all vertices of

the graph. So, C ≤ A*C’, where C’ is the optimal value of vertex

cover. Below is the pseudocode for such approach.

Figure 2: Pseudocode of Maximum Degree Approach

The Maximum Degree Approach algorithm doesn’t guarantee

optimality under any circumstances. However, it does guarantee a

solution that is within the approximation factor A of the optimal

solution. Furthermore, a benefit of an approximation algorithm is

that it runs much faster compared to other methods, as it can

terminate on its own in a relatively short amount of time. This

shows how quality is sacrificed for the sake of efficiency in time,

which depending on the situation at hand could be a better option.

The algorithm worst-case approximation ratio is H(Δ), with H(n)

being the harmonic series, (H(n) = ln(n) + 0.57) and Δ being the

maximum degree of the graph.

Approach #3: Stochastic Local Search

Stochastic Local search is one of the more commonly used

methods to solve combinatorial optimization problems. The

general approach of the local search is to first initiate search space

for the problem in question. From there, various methods are used

to create an initial solution. Then, one evaluates the initial solution

using an evaluation function. This then allows you to iteratively

move among potential solutions to others and evaluate the

performance of every solution. The pseudocode for this approach

can be seen below.

Figure 3: Pseudocode of Stochastic Local Search Approach

The initial construction of the vertex cover for this approach was

created using the Maximum Degree Greedy approach. Once an

initial solution is found, the local search approach iterates through

this initial vertex cover and randomly removes vertices until it is

no longer a vertex cover. Then, an exit vertex from C is selected

in which the vertex is one that produces the minimum increase in

cost. The way cost was calculated was that given the total graph G

and candidate solution in question C, calculate the total number of

edges that are not covered by C. Once this exiting vertex is

identified, it is removed, and an entering vertex is put into the

candidate solution C. This entering vertex is randomly selected

from the set of vertices that are not in the candidate solution C.

This process is then repeated until either the elapsed time is past

the cutoff or the approach reaches the optimum. The advantage

with this approach is that it works relatively fast and well for most

of the graphs given. However, when the graph size is larger there

is a chance that this approach can get stuck at local optimums. In

order to combat this, the search step was randomized by selecting

a random entering vertex which allows for worser steps to occur.

This in turn helps to improve the robustness and performance of

the approach despite still not guaranteeing the optimal result.

Time Complexity Analysis: The time complexity based on our

input G = (V, E) would largely be dominated by the initial

construction of the VC through a maximum degree greedy

approach, which would, at worst case, go through each vertex and

sort each iteration, resulting in a O((|V|^2)log|V|) time complexity.

Selecting an exiting vertex from the VC would take O(|V||E|) to

analyze the cost of removing each possible vertex from the VC.

Selecting an entering vertex and checking the validity of the VC

takes O(|E|) to check each edge. Thus, initial construction of the

VC dominates time complexity. However, for the majority of

cases, the overall time complexity of the Stochastic Local Search

algorithm will be defined by the cutoff time, which across

different graph instances should remain constant (for our

experimentation this was set to 600 seconds).

Space Complexity Analysis: In our code, we originally created the

graph data structure with |V| vertices and |E| edges resulting in

O(|V|+ |E|) space taken up. The vertex cover was stored in a set

data structure and occasionally copied to test exiting vertices, so it

function MDG(G)

Given graph G = (V, E)

 C  ∅

 While E ≠ ∅ do

 Select vertex u with a maximum degree

 V  V – u

 C  V  u

Return C

function StochasticLocalSearch(G)

Given graph G = (V, E)

 C  MDG(G)

 While elapsed time < cutoff do

 While C is a vertex cover then

 C*  C

 Randomly remove one vertex from C

 u  Select exiting vertex from C

 C  C \ {u}

 v  Select entering vertex from V \ C

 C  C  {v}

 Return C*

took up an addition O(|V|) space. So overall, space is dominated

by the graph itself of O(|V||E|), as no major additional storage is

present that would affect the space.

Approach #4: Simulated Annealing Local Search

In this approach, we implement an efficient simulated annealing

algorithm inspired from the paper [4] for the Minimum Vertex

Cover problem. Simulated Annealing can be considered as a

version of an iterative improvement algorithm, which allows

various types of transitions that may be in the opposite direction

of the goal. Generally, in Simulated Annealing implementation,

the temperature progressively decreases from an initial positive

value to zero. At each time step, the algorithm randomly selects a

solution close to the current one, measures its quality, and moves

to it according to the temperature-dependent probabilities of

selecting better or worse solutions, which during the search

respectively remain at 1 (or positive) and decrease towards zero.

[5]

In our problem, the goal is minimizing the size of vertex cover set.

So, in each iteration, we surely step toward decreasing the cost

function, and sometimes with a probability that depends on the

temperature and the difference in cost, we may step toward

increasing the cost function, hoping that our algorithm can get out

of a possible local optimum. The pseudocode for this approach

can be seen in the figure below:

Figure 4: Pseudocode of SA Local Search Approach

In our implementation, the state of node i can be determined by

whether it is added to the vertex cover or not. We show this state

of nodes with a dictionary, containing the node numbers as keys

and 0 or 1 as values. First, we create our initial solution by

randomly selecting the nodes in the graph and them to our

solution until we have a vertex cover. Then, we specify the

parameters of the Simulated Annealing algorithm, e.g., initial and

final temperature, etc. At each time, we select a random node

from the graph and check if it is in vertex cover or not. If it is not

present in VC, adding it would increase the cost function by the

degree of the node, and we add it with the probability e- cost_difference

/ T. If it is present in VC, we delete it only if the deletion of the

node doesn’t cause any edges to get uncovered. We stop the

algorithm if the temperature is lower than a threshold, if we

exceed the cutoff-time specified for running the algorithm, or if

we do more than 10000 iterations without improving the solution.

Throughout the running process, we keep the improved solutions

and their time in the ‘.trace’ file of the graph. We repeat this

process for 10 random seeds and get the average of our results as

seen in table 5. As for the parameters of SA algorithm, since we

had a good initial solution, we wanted to penalize adding too

many nodes to the graph, and since removing each node from the

solution was safe, we wanted to encourage the algorithm to find

ways to remove nodes while still maintaining the vertex cover.

Therefore, we started from relatively low temperature, which

helped our algorithm avoid adding too many nodes to vertex cover

set by bringing down the probability of going towards worse cost.

Time Complexity Analysis: Again, the time complexity of this

algorithm would be dominated by the construction of the initial

solution with a maximum degree greedy approach O(|V|2 log |V|).

Also, since we have some thresholds on time and number of

iterations, those would impact our running time. But in the worst

case, at each iteration, we pick a random node from our graph G,

and either add it to the VC or not. In case we add it, the operation

is simply O(1), and if we want to remove it, we need to do a check

on the VC set to make sure it covers all the edges. For that, we

loop on all the edges on the graph. Therefore, the overall cost for

the algorithm is O(|V|2 log |V|) + O(|V| . |E|).

Space Complexity Analysis: For keeping track of VC nodes, we

keep a dictionary of size |V|, and we need to iterate over all the

edges of the graph. Thus, the space complexity of this algorithm is

O(|V| + |E|).

Empirical Evaluation

The following table helps to show the different platforms that

were used for the different approaches.

Table 1: Platform Overview

Processor RAM
Platform approaches

used

2.6 GHz 6-Core Intel

Core i7
16 GB 3

1.4 GHz Quad-Core

Intel Core i5
8 GB 1

2.3 GHz Quad-Core

Intel Core i5
8 GB 3

2.6 GHz Intel Core i5 8 GB 2,4

function SA Local Search(G)

Given graph G = (V, E)

 Temp 1

 Final_temp .0000001

 alpha  .999

 C  MDG(G)

 While temp < final_temp do

 u  Select random vertex from G

 if u is not in C then

 delta  degree of u

 p  e(-delta/current_temp)

 if p > random number between 0 and 1

 C  C  {u}

 Else

 C*  C \ {u}

 If C* is a vertex cover

 C  C*

 Temp  Temp * alpha

 Return C

This table helps to give perspective when evaluating the results

obtained by different approaches as the platform these approaches

are being used on can affect the solution due to the cutoff time

constraint. These four approaches were evaluated in terms of

runtime and relative error where relative error is the percent

difference of each respective approach and the given optimal

value. For the case of the local search approaches, 10 separate

runs with different random seeds were performed for each

respective graph. These results were then averaged for each graph.

Below one can see the results that were obtained with each

approach.

Table 2: Branch-and-Bound Approach Results

Branch-and-Bound Results

Dataset
Time

(sec)
VC Value Relative Error

jazz.graph 195.37 182 0.15

karate.graph 1.23 14 0.00

football.graph 51.47 105 0.12

as-22july06.graph >600 - 1.00

hep-th.graph >600 - 1.00

star.graph >600 - 1.00

star2.graph >600 - 1.00

netscience.graph 307.17 1453 0.62

email.graph 588.73 873 0.47

delaunay n10.graph 260.62 935 0.33

power.graph >600 - 1.00

Table 3: Maximum Degree Greedy Approach Results

Approximation Algorithm – Maximum Degree Greedy Results

Dataset
Time

(sec)

VC Value Relative Error

jazz.graph 0.018 160 0.013

karate.graph 0.00051 14 0.00

football.graph 0.017 96 0.021

as-22july06.graph 88.063 3312 0.0027

hep-th.graph 24.48 3947 0.0053

star.graph 122.42 7366 0.067

star2.graph 74.55 4677 0.030

netscience.graph 0.82 899 0.00

email.graph 0.46 605 0.019

delaunay n10.graph 0.24 740 0.053

power.graph 8.26 2272 0.031

Table 4: Stochastic Local Search Approach Results

Local Search Approach #1 (Stochastic) Results

Dataset
Time

(sec)
VC Value Relative Error

jazz.graph 12.74 158.10 0.00063

karate.graph 0.00 14 0.00

football.graph 1.97 95 0.011

as-22july06.graph 92.25 3309.00 0.0018

hep-th.graph 162.32 3937.60 0.0030

star.graph 554.68 7035.30 0.019

star2.graph 566.64 4665.90 0.027

netscience.graph 0.58 899 0.00

email.graph 107.86 598.90 0.0082

delaunay n10.graph 129.67 717.67 0.021

power.graph 531.49 2239.70 0.017

Table 5: Simulated Annealing Local Search Approach Results

Local Search Approach #2 (Simulated Annealing) Results

Dataset
Time

(sec)
VC Value Relative Error

jazz.graph 0.53 160 0.012

karate.graph 0.25 14 0.000

football.graph 0.40 96 0.021

as-22july06.graph 105.01 3387.66 0.035

hep-th.graph 50.51 4235 0.078

star.graph 144.18 7060.1 0.022

star2.graph 117.23 4643.5 0.022

netscience.graph 4.17 899.3 0.000

email.graph 4.17 602 0.013

delaunay n10.graph 3.64 730.1 0.038

power.graph 37.03 2251.8 0.022

One interesting point that can be drawn from these results are that

one can obtain a lower bound on the solution quality by looking

for the highest relative error in approximation approach results.

This would be a lower bound because one can rule out any

solution with a relative error higher than the one obtained from

implementing the approaches. Furthermore, quality runtime

distribution plots (QRTD), solution quality distribution plots

(SQD) ,and boxplots were created for the local search approaches

to help convey the behavior of the respective approaches. These

plots were created for two graphs in question: ‘star2.graph’ and

‘power.graph’. The plots can be seen in the subsequent figures

below.

Figure 5: QRTD Plot of Power Graph Using Stochastic Local

Search over 10 Runs

Figure 6: QRTD Plot of Star2 Graph Using Stochastic Local

Search over 10 Runs

Figure 7: SQD Plot of Power Graph Using Stochastic Local

Search over 10 Runs

Figure 8: SQD Plot of Star2 Graph Using Stochastic Local Search

over 10 Runs

Figure 9: Boxplot of Runtime for Star2 and Power Graphs Using

Stochastic Local Search Approach over 10 Runs

Figure 10: QRTD Plot of Power Graph Using SA Local Search

over 10 Runs

Figure 11: QRTD Plot of Star2 Graph Using SA Local Search

over 10 Runs

Figure 12: SQD Plot of Power Graph Using SA Local Search over

10 Runs

Figure 13: SQD Plot of Star2 Graph Using SA Local Search over

10 Runs

Figure 14: Boxplot of Runtime for Star2 and Power Graphs Using

Simulated-Annealing Local Search Approach over 10 Runs

These figures help to illustrate that the two local search

approaches were able to get close the optimal solution while still

not reaching the cutoff time of 10 minutes. Furthermore, they help

to show the variation in runtimes for different runs (and random

seeds) as seen by the boxplots.

Discussion

From our experimentation, it is shown that different algorithms

yield different results in regard to runtime efficiency and optimal

quality. The branch-and-bound approach results help to confirm

and challenge prior knowledge about the advantages and

disadvantages of such an approach. For several of the larger

graphs, the approach failed to find any solution before the cutoff

time of 10 minutes elapsed. However, for the graphs for which the

algorithm found a solution before the cutoff time, the algorithm

took longer than the approximation and local search approaches.

The approximation approach yielded quick results as it operates in

polynomial time. However, the VC sizes it produced were far

from the optimum in comparison to the local search approaches.

This result is expected, as approximation algorithms work to find

a solution quickly but do not guarantee the optimal solution.

In the stochastic local search approach, one can see that the

solution performs best in terms of relative error but at the expense

of a longer runtime. In addition, as one can see in the results the

larger graphs tend to produce a higher relative error. This can be

due to the increase in combinatorial possibilities because of a

larger search space. Although the entering vertex was selected at

random, the approach often would plateau at a local optimum. An

approach in fixing this problem would be to introduce a

probability factor when deciding an entering vertex so we would

have the possibility of exploring other optimums. In addition, a

use of a different data structure that evaluates whether the

candidate solution is a vertex cover would decrease the time

complexity of the approach, providing more simplicity in the

analyzation through the program and more efficiency in the

runtime of the code. While the algorithm will terminate only

based on the cutoff time we set for the code, we will yield better

results with the progression of time.

In the Simulated Annealing implementation results, we can see

that our solution can take a longer time to converge for large

graphs. This is normal due to the huge size of the search space.

However, the good side of this approach is the relatively shorter

time to return a solution compared to other approaches which can

take much longer, and the solutions created in this short period of

time also look good. Giving the algorithm a good enough initial

solution was important in reaching the local optimum fast. We

still can improve our solution, especially for the large graphs, if

we find a way to check if we still have a vertex cover after

removing a node efficiently. Also, since there is a limit on

removing nodes and improving the solution, sometimes the

algorithm doesn’t even change the initial solution. This is fair

because as mentioned, our initial solution is relatively close to the

optimal solution.

Conclusion

From the development of our algorithms, it is evidenced that

different approaches to solve combinatorial optimization problems

lead to different results in efficiency and quality. These different

approaches serve as the general methods to cope with NP-

Complete problems like the MVC. The Branch and Bound

algorithm sacrifices runtime for guaranteeing optimality as long as

the algorithm finishes, while the Approximation and Local Search

algorithms show improvements by sacrificing quality for the

solution, with the Approximation algorithm guaranteeing a bound

on the solution. Depending on circumstances and goals of an

objective, certain approaches would be preferrable over others in

different cases. However, when just evaluating the performance of

the approaches as to which one has the best relative error, the

stochastic local search approach performs best. The MVC

optimization problem serves as one of the most applicable

problems in our society today, with several applications in modern

industry and research. In the future, this will only become a more

relevant scenario for more applications. The approaches we’ve

presented to solve the MVC problem are imperative towards

solving complex combinatorial optimization problems in the

world today and in the future.

References

[1] Diogo V. Andrade, Mauricio G.C. Resende, and Renato F.

Werneck. Fast local search for the maximum independent set

problem. Journal of Heuristics, 18(4):525–547, 2012.

[2] Shaowei Cai1 Kaile Su and Abdul Sattar. Two new local

search strategies for minimum vertex cover. 2012.

[3] Francois Delbot and Christian Laforest. Analytical and

experimental comparison of six algorithms for the vertex cover

problem. Journal of Experimental Algorithmics (JEA), 15:1–4,

2010.

[4] Xinshun Xu, Jun Ma, An efficient simulated annealing

algorithm for the minimum vertex cover problem,

Neurocomputing, Volume 69, Issues 7–9, 2006

[5] https://en.wikipedia.org/wiki/Simulated_annealing

