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Introduction
Traffic congestion serves as a paramount issue in a society that is growing exponentially more
advanced in the 21st century. The city of Atlanta itself is ranked as the 10th most congested city in
the U.S. The majority of traffic congestion occurs in or within a major metropolitan area, namely
where intersections of major interstates and/or highways occur. To alleviate this issue, the city of
Atlanta undertook a procedure to install ramp meters in designated areas in and around the city. A
ramp meter is a traffic signal that regulates the flow of traffic entering freeways according to on-
demand traffic conditions. Its purpose is to alleviate congestion that could occur in areas nearby.

For our project, we will look further into the effects of ramp metering on an advanced system and
observe its impact on traffic flow across an intersection of two major interstates. The basis behind
our simulation consists of applying a microscopic traffic flow model that is based on dynamic
parameters such as acceleration and velocity of a single vehicle. From there, our simulation
incorporates lane-changing by applying a safety and advantage gain criteria. The safety criterion is
based on maintaining a deceleration below a certain threshold and the advantage gain criterion
assesses the gain that would come about from a driver if they change lanes and if that gain is
marginal, they will not change lanes. From there, traffic flow data is retrieved via the Georgia
Department of Transportation and inputted within our simulation model.



Description of System
The system for the scope of this project focuses on the impact of traffic ramp meters on the overall
traffic flow and congestion. The area of focus is the I-75 and I-285 intersection where the traffic flow
is analyzed when assessing varying behavior from the ramp meters. This site was selected as it had
readily available data at multiple points in the intersection and there are ramp meters at certain
points in the intersection. The data is from the Georgia Department of Transportation and it is used
in order to gauge and have more accurate traffic flow and speed data. For the intersection, there are
4 distinct areas of input and output: I-75 North, I-75 South, I-285 East (also called I-285 North) , and
I-285 West (also called I-285 South), each of which has vehicles heading in opposing directions. A
vehicle can also reach any of these outputs from any of the inputs, as the intersection is designed in
a way to reach any designated input/output area. There will be two ramp meters located at
designated spots on the interchange. With this traffic flow network, and with a plethora of data
available, we are able to analyze our system with efficiency and accuracy.

Conceptual Model of System
Our system is designed with the intent of producing a Discrete Event Simulation. The simulation will
analyze the flow of vehicles in discrete time stepped patterns, with each time step representing a
particular instance of the model. Here, we will look a look of a system of a freeway, which will serve
as a proof-of-concept to how the interchange system will work. In total, the freeway of our proof-
of-concept study area will consist of six lanes and will last 500 meters long. Vehicles will enter from
any of the lanes at a random arrival rate followed by a normal distribution and will not be analyzed
after they leave the system once they reach the end of the 500 meter study area. Each vehicle's
velocity will change along the system depending on the it's surroundings. Vehicles may change
lanes at anytime while being analyzed in the system. The ramp meter will be located at the 100
meter mark of the system and vehicles will enter the freeway from the right. This concept is
visualized in Figure 1. There exists a discrete flow model of the system given a particular instance in
time. Vehicles continue to travel down the freeway until it exits the system. The ramp meter
represents a server which will process vehicles wanting to enter the system. Vehicles will be before
the ramp meter and processed sequentially one at a time onto the freeway. The ramp meter
interstate entrances will be represented by a queuing model. A queue will hold all the vehicles that
are waiting to be processed and enter the free way. The arrival rates of the vehicles to the queue will
be determined by a normal distribution. At the ramp meter light, one car will be processed at a time,
and the rate at which the vehicles are processed will be deterministic at a designated service rate.
Once processed, vehicles will exit the queue and enter the freeway along the direction of traffic flow.
The figure below helps to visualize this process



The figure below gives a visual example of the 3 steps for which the vehicles will be processed. The
red light represents that a vehicle may not pass through the ramp meter yet. The green light
represents an all clear to enter the freeway.

The actual system we will be studying will take this proof-of-concept and apply it to a 4-way
interchange. This interchange will have traffic flow in opposing directions along each of the four
ways, and will also be analyzed on a discrete time-stepped basis. The following two figures below
provide a map and satellite view of the system, respectively. The ramp meters for the interchange
will be located on three designated spots and will likewise be modeled as it was in the proof-of-
concept.



This simulation draws inspiration from a piece of literature that focuses on the simulation of freeway
and urban traffic via a time-continuous microscopic traffic flow model or better known as the
Intelligent Drivel Model (IDM). This approach helps to describe the dynamic behavior that occurs
during traffic flow via the position and speed for each respective vehicle. The following equations
are used to represent the dynamic position and speed of each vehicle.

Note that acceleration can be separated to a free road term and an interaction term where:

In addition,  represents the deceleration that is a function as seen below:
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Where , , , , and  are parameters within the model that represent the following:

Desired velocity ( ): the velocity of the vehicle if there was no traffic
Minimum spacing ( ): a minimum desired net distance
Desired time headway (T): the minimum possible time to the vehicle in front
Acceleration (a): the maximum acceleration of a car
Braking deceleration (b): a positive number that represents the maximum deceleration of a car

This method of developing a simulation model works to improve the weaknesses of previous
methods by addressing the loss of realistic properties in the deterministic limit. These limitations are
addressed by applying a microscopic traffic flow model which aims to simulate single vehicle-driver
units, so the dynamic variables of the models represent microscopic properties like the position and
velocity of single vehicles. The implementation of this method can be seen below.

Imports, Parameters Initialization, and
Implementations
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In [1]: import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import csv 
import os 
 
from tqdm.notebook import tqdm 
 
%matplotlib inline 

In [2]: # IDM Params 
DELTA = 4.0 
MAIN_BSAVE = 9. # max deceleration 
 
# Lane Change Params 
MAIN_SMIN = 5. # gap for change lane 
 
# Car Factory Params 
V0_INIT = 120 # this is in KMH 
S0_INIT = 2 # minimum distance allowed 
T_REACTION = 2.3 # reaction time 
A_INIT = 3.0 # acceleration factor 
B_INIT = 3.0 # braking factor 
P_FACTOR = 0.1 # Politeness 
DB = 0.3 # change lane threshold 
 
# Car Params 
SPEED_LIMIT_KMH = 112.654 # kmh 
T_DELAY_CHANGE = 1.6 # time to check lane change 
LEN_CAR = 3 # car length 



 
# Street Params 
TIME_STEP = 0.5 
BOUNDARY_DISTANCE = 200 
INSERT_GAP = 7 

In [3]: class IDM(): 
    ismax = 100 # ve(s) = ve(ismax) if s > ismax 
 
    def __init__(self, v0, a, b, s0=2, T=1.5): 
        ''' 
        :param v0: max speed of the car 
        :param delta: technical term in the acc calculation 
        :param a: max acceleration m/s^2 
        :param b: normal deceleration m/s^2 
        :param s0: default 2 
            least safe distance between two cars 
            --> exceed this means need to brake immediately 
        :param T:  default 1.5 human reaction time T for s* 
        ''' 
        self.v0, self.delta, self.a, self.b, self.s0, self.T = v0, DELTA, a, b, s0, T 
        self.sqrtab = np.sqrt(a*b) 
        self.veq_table = np.zeros(self.ismax + 1) 
        self.initialize() #generate equilibrium velocity table 
 
 
    def initialize(self): 
        dt = 0.5 #relaxation timestep 0.5s 
        kmax = 20 #number of iteration in relaxation 
        for s in range(1, self.ismax+1): 
            Ve = self.veq_table[s-1] 
            for k in range(0, kmax): 
                s_star = self.s0 + Ve*self.T 
                acc = self.a * (1.-np.power(Ve/self.v0, self.delta) - (s_star**2) / (s*
                Ve += acc * dt 
                Ve = max(Ve, 0) # can't be lower 
            self.veq_table[s] = Ve 
 
    def Veq(self, dx): 
        ''' 
        function for equilibrium velocity using veq_table; 
            ve(s>ismax)=ve(ismax) 
        this value is used to set up initial speed of vehicle 
        :param dx: the distance between the current and forward car 
        :return: velocity in m/s 
        ''' 
        s = int(np.floor(dx)) 
        V = 0 
        if s < 0: 
            pass # V=0 
        elif s < self.ismax: 
            rest = dx - s 
            V = (1-rest) * self.veq_table[s] + rest * self.veq_table[s+1] 
        else: 
            V = self.veq_table[self.ismax] 
        return V 



The next piece of literature that we drew inspiration from focuses more on the process behind
creating a general lane-changing model. This is done through the development of a set lane-
changing rules for discretionary and mandatory (depending on the traffic) lane changes for various
car-following models. These rules are derived from the assessment of the utility of a given lane and
the risk associated with a lane change using the common parameters in a car-following model such
as acceleration, velocity, velocity-differences, and space between cars in a lane. Within this model, a
safety criterion is applied to prevent collisions that assess the effect on the upstream vehicle in the
target lane. The criterion is outlined below:

Where  is deceleration of the successor and  is a safety limit. This criterion has flexibility in it
all the information provided by a longitudinal car-following model. Beyond this safety criterion, the
incentive criterion takes into account the advantages and disadvantages for other drivers associated
with a single car’s lane change via a politeness factor. This factor allows one to vary the motivation
behind a lane change from one that is purely self-interested to a more cooperative behavior. The
criterion is outline as seen below:

Where

 and  represent the old and new acceleration of the driver
 and  represent the old and new acceleration of the new follower
 and  represent the old and new acceleration of the old follower

 represents the politeness factor

 
 
 
    def calc_acc(self, bwd, fwd): 
        ''' 
        :param bwd: Moveable, The current vehicle 
        :param fwd: Moveable, The vehicle in the forward vehicle 
        :return: acceleration m/s^2 
        ''' 
        delta_v = bwd.vel - fwd.vel 
        s = bwd.distance_to(fwd) 
        vel = bwd.vel 
        s_star_raw = self.s0 + vel * self.T\ 
                        + (vel * delta_v) / (2 * self.sqrtab) 
        s_star = max(s_star_raw, self.s0) 
        acc = self.a * (1 - np.power(vel / self.v0, self.delta) - (s_star **2) / (s**2)
        acc = max(acc, -6) 
        return acc 
 
    def get_v0(self): 
        ''' 
        get maximum designed speed of this vehicle 
        ''' 
        return self.v0 
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 represents an acceleration threshold that prevents lane changes if the overall advantage
is marginal.

Incorporating this criterion makes for a more holistic analysis of whether to perform a lane change
in that it depends on if the advantage gained is high enough or marginal depending on the
threshold and also assesses each driver’s appetite for this lane change based on the politeness
factor. What this piece of literature did next was apply this model to a traffic simulation of cars using
the intelligent driver model like previously discussed. In addition, an open system with ramp was
studied to investigate the lane-changing rate as a function of the overall traffic flow in the system.
Their findings were that the lane-changing rate is mainly determined by the politeness factor but
also on the considered location of the road. The next step for this study is to research the empirical
justification of their system and to validate and calibrate their model in the real world. Our
implementation for this approach can be seen below.

Δath

In [4]: class LaneChange(): 
    ''' 
    Implementation of the lane-changing model MOBIL "Minimizing Overall Brakings Induce
    LEFT = -1 
    RIGHT = 1 
    ''' 
    def __init__(self, p, db, gap_min=MAIN_SMIN, bsave=MAIN_BSAVE, bias_right=0): 
        ''' 
        :param p: politeness factor 
        :param db: change lane incentive penalty 
        :param gap_min: max safe distance 
        :param bsave: max safe braking deceleration 
        :param bias_right: bias (m/s^2) to drive right 
        ''' 
        self.p, self.db, self.gap_min, self.bsave, self.bias_right = p, db, gap_min, bs
 
    def set_bias_right(self, bias): 
        self.bias_right = bias 
 
 
    def change_ok(self, me, f_old, b_old, f_new, b_new): 
        ''' 
        :param me: the current car 
        :param f_old: forward car old 
        :param b_old: .. (maybe useless but keep for further use) 
        :param f_new: .. 
        :param b_new: .. 
        :return: bool 
            change or not 
        ''' 
        # is 1 if new lane is on the right, else 0 
        is_right = int(f_new.lane > me.lane) 
        if (me.distance_to(f_new) <= self.gap_min or 
                b_new.distance_to(me) <= self.gap_min): 
            return False 
 
        # check safety criterion (a > -bsave) 
        b_new_acc = b_new.model.calc_acc(b_new, me) 
        me_new_acc = me.model.calc_acc(me, f_new) 



Given that we are modeling traffic using a discrete time simulation, we define a car as a object that
defines its state variables at a particular time in the simulation. We also define a variety of update
functions based on IDM and MOBIL that compute the acceleration, velocity, and lane change
timings. This class is fairly straightforward and is the main actor used in the simulation.

        if (b_new_acc < -self.bsave or me_new_acc < -self.bsave): 
            return False 
 
        # my advantage of acceleration on lane change 
        me_acc_adv = me_new_acc - me.model.calc_acc(me, f_old) + \ 
                            is_right * self.bias_right 
        b_new_acc_disadv = b_new.model.calc_acc(b_new, f_new) - b_new_acc 
        if b_new_acc_disadv < 0: 
            b_new_acc_disadv = 0 
        return me_acc_adv - self.p * b_new_acc_disadv > self.db 

In [5]: class Car(): 
    def __init__(self, x, v, lane, model: IDM, lane_change: LaneChange, length): 
        self.pos = x 
        self.vel = v # vel is in m/s 
        self.lane = lane 
        self.model = model  
        self.lane_change = lane_change 
        self.length = length 
        self.acc = 0  # current acceleration 
        self.acc_history = 0 # acc 1 calculation before 
        self.tdelay = 0  # cumulative waiting time 
        self.Tdelay = T_DELAY_CHANGE  # time to check whether change lane or not 
 
    def __copy__(self): 
        return Car(self.pos, self.vel, self.lane, self.model, self.lane_change, self.le
 
    @property 
    def vel(self): 
        return self.__vel 
 
    @vel.setter 
    def vel(self, v): 
        if v > SPEED_LIMIT_KMH / 3.6: 
            self.__vel = SPEED_LIMIT_KMH / 3.6 
 
        elif v <= 0: 
            self.__vel = SPEED_LIMIT_KMH 
 
        else: 
            self.__vel = v 
 
    def time_to_change(self, dt): 
        self.tdelay += dt 
        if self.tdelay > self.Tdelay: 
            self.Tdelay -= self.tdelay 
            return True 
        return False 
 
    def translate(self, dt): 



Extending the general Car framework, we define a human car, that is that reaction time is not
instantaneous and velocity is calculated as a function of delta t, the purpose being to add
smoothing to the acceleration and make things less rigid with acceleration computations.

We also define boundary cars to be used as ghost objects in the simulation since we naively assume
that we can compute acceleration, lane change, and distance to next as being always defined. These
objects are to be generated at each update step in the simulation at the boundaries of the road
segment to ensure all actual cars can correctly compute their update steps.

        self.pos += dt * self.vel 
 
    def accelerate(self, dt, fwd=None): 
        assert (fwd == None) 
        if fwd != None: 
            self.acceleration(fwd) 
        self.vel += self.acc * dt 
        if (self.vel < 0.): 
            self.vel = 0. 
 
    def acceleration(self, fwd=None): 
        if fwd == None: 
            return self.acc 
        else: 
            return self.model.calc_acc(self, fwd) 
 
    def distance_to(self, fwd): 
        return fwd.pos - self.pos - self.length 
 
    def change(self, f_old, b_old, f_new, b_new): 
        return self.lane_change.change_ok(self, f_old, b_old, f_new, b_new) 

In [6]: class CarHuman(Car): 
    acc_history = 0 
 
    def accelerate(self, dt, fwd=None): 
        if fwd != None: 
            self.acceleration(fwd) 
        self.vel += self.acc_history * dt 
        self.acc_history = self.acc 
        if (self.vel < 0.): 
            self.vel = 0. 

In [7]: class BCCar(): 
    def __init__(self, x, v, lane, model, length=0): 
        self.pos, self.vel, self.lane, self.model, self.length = x, v, lane, model, len
 
    @property 
    def lane_change(self): 
        return None 
 
    @lane_change.setter 
    def lane_change(self, lanechange): 
        pass 
 



Car Factory is the main object generator passed into the class we have yet to discuss. This class is
responsible for defining the IDM parameters for each car and generating car objects correcting
given the parameters of the current state.

The main driver in the simulation is the street itself. We treat this class as the one who is responsible
for handling cars entering and exiting its segment. The way that this class works is pretty
straightforward, at each iteration (delta t time), some number of cars are entered into the vehicle
queue, that is, the non-existent space before the road segment where a potentially infinite number
of cars can exist. We utilizing queuing heavily here since cars can't be inserted into any lane unless
there is room for it (based on the defined space needed for a car to take up). We also define
another queuing mechanism which we refer to as a ramp queue, that is, again, another non-existent
road segment where cars are inserted only on to the right lane at some specified distance up. We do
this to ensure that cars entering the road segment from a ramp are correctly inserted into the right
lane (assuming there is room). This queuing method is naive in some ways, but ultimately, is fairly
accurate in representing reality as we will demonstrate.

As was mentioned before, the Street class handles updating all cars that exist on it before moving
them to another road segment or destroying them. In each update, we first created boundary cars
to ensure all cars in the segment can properly compute their values, then we accelerate every car
based on current position. Next, we prompt each car to change lane if they desire and then remove
the boundary cars. Finally, we move each car's position given its new acceleration and then compute

    def time_to_change(self, dt): 
        return False 
 
    def translate(self, dt): 
        pass 
 
    def accelerate(self, dt, fwd=None): 
        pass 
 
    def acceleration(self, fwd=None): 
        return 0. 
 
    def distance_to(self, fwd): 
        return fwd.pos - self.pos - self.length 
 
    def change(self, f_old, b_old, f_new, b_new): 
        pass 

In [8]: class CarFactory(): 
    def __init__(self): 
        self.car_human_IDM = IDM(v0 = V0_INIT, a = A_INIT, b = B_INIT, s0 = S0_INIT, T 
        self.lane_change_human = LaneChange(p = P_FACTOR, db = DB, gap_min = MAIN_SMIN, 
 
    def create_vehicle(self, position, initial_gap, lane): 
        IDM = self.car_human_IDM 
        lc = self.lane_change_human 
        v = IDM.Veq(initial_gap) 
 
        return CarHuman(position, v, lane, IDM, lc, LEN_CAR) 



the new cars we need to dequeue in this step and remove cars past the road boundary. One other
thing this class does is recording position and velocity states at each iteration; which makes metric
computation extremely easy for evaluation.

This design of modeling individual road segments allows us to link flow between segments, where
some road segments could be considered as sources, others as sinks, and other that just process
flow through them. Given that each road segment has varying size and parameters, we believe this
modular design is inherently powerful for traffic simulation.

In [9]: class Street(): 
    def __init__(self, num_lane, road_length, car_factory, dt = TIME_STEP): 
        self.num_lane, self.road_length, self.carfactory, self.dt= num_lane, road_lengt
        self.street = [] # positions sorted in decreasing order 
        self.time, self.flow_out_speed, self.flow_in_speed = 0, 0, 0 
        self.vehicle_wait, self.vehicle_in, self.vehicle_out = 0, 0, 0 
        self.vehicle_wait_ramp = 0 
 
        self.road_state = [] 
        self.road_state_vel = [] 
        self.cars_out = [] 
         
    def update(self, q_in, position = 0, insert_on_last_lane = False, change_lanes = Tr
        self.time += self.dt 
        self.insert_BC() # add boundary 
        self.accelerate() # calculate new velocity 
        if change_lanes: 
            self.change_lanes() 
        self.clear_BC() # remove boundary 
 
        self.translate() # pos += vel * dt 
        self.sort() # derease order of car.pos 
 
        self.io_flow(q_in, position=position, insert_on_last_lane=insert_on_last_lane) 
 
        if self.time % 100 == 0: 
            self.calc_io_flow() 
 
 
        state = [] 
        vel_state = [] 
        for car in self.street: 
            state.append((car.lane, car.pos)) 
            vel_state.append((car.lane, car.vel)) 
 
        self.road_state.append(state) 
        self.road_state_vel.append(vel_state) 
 
    def report(self): 
        ''' Debug report for lane states ''' 
        self.vehicle_in, self.vehicle_out = 0, 0 
 
        vels = [car.vel for car in self.street] 
        lane_count = np.zeros(self.num_lane) 
        for car in self.street: 
            lane_count[car.lane] += 1 



        print("-----------------------------------------------------------------") 
        print ("time = {:5.2f}".format(self.time)) 
        print("total vehicle: {:4}, average speed {:4.2f}, cars in queue: {:3.2f} vehic
              .format(len(self.street), np.average(vels), self.vehicle_wait, self.vehic
        print("\t num cars in each lane {}".format(lane_count)) 
        print("-----------------------------------------------------------------") 
 
    @staticmethod 
    def compute_average_lane_dist(states, num_lane, road_length): 
        distance = np.zeros((len(states), num_lane)) 
        for i, state in enumerate(states): 
            x = np.array(state) 
 
            for lane in range(num_lane):
                cars = [] 
                for car in x: 
                    if car[0] == lane: 
                        cars.append(car[1]) 
 
                cars = sorted(cars) 
                cars = np.diff(np.array(cars)) - 5 
                distance[i,lane] = np.mean(cars) 
 
        distance= np.nan_to_num(distance, nan=road_length) 
        return distance.mean(axis=0) 
 
    def calc_io_flow(self): 
        self.flow_in_speed = self.vehicle_in / (self.dt * 100) 
        self.flow_out_speed = self.vehicle_out / (self.dt * 100) 
 
    def first_index_on_lane(self, lane):
        if lane >= self.num_lane: 
            raise IndexError("max lane = {}".format(lane)) 
        for idx in range(len(self.street)): 
            if self.street[idx].lane == lane: 
                return idx
        return -1 
 
    def last_index_on_lane(self, lane): 
        if lane >= self.num_lane: 
            raise IndexError("max lane = {}".format(lane)) 
        for idx in range(len(self.street)-1, -1, -1): 
            if self.street[idx].lane == lane: 
                return idx
        return -1 
 
    def next_index_on_lane(self, lane, idx): 
        if lane >= self.num_lane: 
            raise IndexError("max lane = {}".format(lane)) 
        for idx in range(idx-1, -1, -1): 
            if self.street[idx].lane == lane: 
                return idx
        return -1 
 
    def prev_index_on_lane(self, lane, idx): 
        if lane >= self.num_lane: 
            raise IndexError("max lane = {}".format(lane)) 



        for idx in range(idx+1, len(self.street)): 
            if self.street[idx].lane == lane: 
                return idx
        return -1 
 
    def sort(self): 
        sorted = False 
        while not sorted: 
            sorted = True 
            for i in range(1, len(self.street)): 
                if self.street[i-1].pos < self.street[i].pos:
                    self.street[i-1], self.street[i] = \ 
                        self.street[i], self.street[i-1] 
                    sorted = False 
 
    def translate(self): 
        for car in self.street: 
            car.translate(self.dt) 
 
    def accelerate(self): 
        for idx in range(len(self.street)): 
            fwd = self.next_index_on_lane(self.street[idx].lane, idx) 
            self.street[idx].acceleration(self.street[fwd]) 
        for car in self.street: 
            car.accelerate(self.dt) 
 
    def insert_BC(self): 
        dx = BOUNDARY_DISTANCE 
        for lane in range(self.num_lane): 
            id_first = self.first_index_on_lane(lane) 
            id_last = self.last_index_on_lane(lane) 
            if id_first == -1: 
                first_vel = 0 
            else: 
                first_vel = self.street[id_first].vel 
            if id_last == -1: 
                last_vel = 0 
            else: 
                last_vel = self.street[id_last].vel 
            self.street.insert(0, BCCar(self.road_length+dx, first_vel, lane, self.carf
            self.street.insert(len(self.street), BCCar(0 - dx, last_vel, lane, self.car
 
    def clear_BC(self): 
        self.street = [car for car in self.street if not isinstance(car, BCCar)] 
 
    def change_lanes(self): 
        for idx in range(len(self.street)): 
            new_lane = [] 
            car = self.street[idx] 
            # add possible new lanes, otherwise next loop do nothing 
            if car.time_to_change(self.dt): 
                if car.lane - 1 >= 0: 
                    new_lane.append(car.lane - 1) # left is shadowed if right is True 
                if car.lane + 1 < self.num_lane: 
                    new_lane.append(car.lane + 1) # right first 
            for lane in new_lane: 
                f_old = self.street[self.next_index_on_lane(car.lane, idx)] 



Simulation Overview and Assumptions

                b_old = self.street[self.prev_index_on_lane(car.lane, idx)] 
                f_new = self.street[self.next_index_on_lane(lane, idx)] 
                b_new = self.street[self.prev_index_on_lane(lane, idx)] 
                if car.change(f_new=f_new, f_old=f_old, b_new=b_new, b_old=b_old): 
                    self.street[idx].lane = lane 
 
    def io_flow(self, q_in, position = 0, insert_on_last_lane=False): 
        self.o_flow() 
        self.i_flow(q_in, position = position, insert_on_last_lane = insert_on_last_lan
 
    def i_flow(self, q_in, position = 0, insert_on_last_lane=False): 
        # in 
        self.vehicle_wait += q_in * self.dt  # add to waitlist 
        lanes = np.arange(self.num_lane) 
 
        if insert_on_last_lane: 
            lane = lanes[-1] 
            if self.vehicle_wait_ramp > 1: 
                self.vehicle_wait_ramp -= 1 
                idx_fwd = self.last_index_on_lane(lane) 
                if idx_fwd == -1: 
                    distance = self.road_length 
                else: 
                    distance = self.street[idx_fwd].pos 
 
                if distance >= INSERT_GAP: 
                    self.street.append(self.carfactory.create_vehicle(position, distanc
                    self.vehicle_in += 1 
 
        if insert_on_last_lane: 
            lanes = lanes[:-1] 
 
        np.random.shuffle(lanes) 
        for lane in lanes: 
            if self.vehicle_wait > 1: 
                self.vehicle_wait -= 1 
                idx_fwd = self.last_index_on_lane(lane) 
                if idx_fwd == -1: 
                    distance = self.road_length 
                else: 
                    distance = self.street[idx_fwd].pos 
 
                if distance >= INSERT_GAP: 
                    self.street.append(self.carfactory.create_vehicle(position, distanc
                    self.vehicle_in += 1 
 
    def o_flow(self): 
        # out 
        origin = len(self.street) 
        self.street = [car for car in self.street if car.pos < self.road_length] 
        self.vehicle_out += origin - len(self.street) 
        self.cars_out.append(origin - len(self.street)) 



That concludes the model definition! We have defined a discrete time simulator using Car objects in
a Street controller, where the Street is responsible for managing and updating its children Cars.

We make a few naive assumptions that we will identify here. Firstly, we normally distribute all of the
constant parameters about car objects in order to introduce variance into the simulation. This can
cause things like long trailing backups, frequent lane changes, or other nuances that are hard to
model explicitly. Second, the queuing model in our roads is two folded, both queuing into any lane
and queuing onto the roads "ramp". Although this may seem correct, consider a situation where we
have the joining of two road segments, one in which the inflow is far greater than the outflow. In the
inflow road, it will appear as though traffic is flowing normally and all is good, but in the outflow
road, it will be congested with an ever-growing queue. In essence, our model lacks feedback to
previous segments. We get around this by verifying that our road segments are not creating
massive queues and that out flow and in flow are preserved.

The simulations taking place will utilize the parameters above as necessary, each of which is
commented concisely for your understanding. A series of simulation models will then be
implemented and run accordingly.

The first simulation presented below demonstrates a simply two-lane road and the vehicle attributes
on it over a series of time steps for a Discrete Event Simulation Model. This simulated was designed
for the purpose of showing how the vehicles are set up to act and how the vehicles interact with
each other.

Note that in all simulations below, the units for velocity are specified in meters per second. Unless
otherwise specified, assume the speed limit for the road is 70 MPH, or 112.654 KPH.

In [10]: # Simulation parameters 
 
num_lane = 2 
road_length = 500 # 5 km 
flow_in = 1 # vehicle per second 
dt = 0.1 
iters = 10000 
 
seed = 1111 
np.random.seed(seed=seed) 

In [11]: cf = CarFactory() 
 
road = Street(num_lane, road_length, cf, dt=dt) 
 
for i in  tqdm(range(iters)): 
    q_in = np.random.normal(flow_in, flow_in/2 ** 1/5, (1))[0] 
     
    road.update(q_in, insert_on_last_lane=False) 
     
#     if i % 1000 == 0: 
#         road.report() 



The following figures help to visualize the system that is created where each marker represents a
car, the distance on the road is defined by the y-axis, and the lanes are defined by the x-axis.

Show that cars are entering from right lane
when in ramp queue
The simulation presented demonstrates the right lane of the simple road, with the purpose of
showing how the lane creates a build up when taking in vehicles from the ramp queue.

Out[11]:

In [12]: fig, axs = plt.subplots(2, 5, figsize=(30,15)) 
 
for i, state_idx in enumerate(range(0, iters, 1000)): 
    state = road.road_state[state_idx] 
    state_x = [s[0] for s in state] 
    state_y = [s[1] for s in state] 
    eps = 0.3 
    axs[int(i/5), i%5].set_title('Road state at {} timestep'.format(state_idx)) 
    axs[int(i/5), i%5].set_xlabel('Lane') 
    axs[int(i/5), i%5].set_ylabel('Distance (m)') 
    axs[int(i/5), i%5].set_xlim(0 - eps, num_lane - 1 + eps) 
    axs[int(i/5), i%5].set_xticks(range(0, num_lane)) 
    axs[int(i/5), i%5].set_ylim(0, road_length) 
    axs[int(i/5), i%5].scatter(state_x, state_y, s=6, marker='^') 

Out[12]:

In [13]: # Simulation parameters 
 
num_lane = 3 
road_length = 500 # 5 km 
flow_in = 0.5 # vehicle per second 
dt = 0.1 
iters = 10000 



The following figure helps to visualize the behavior of the simulation where each car enters from the
right lane.

 
seed = 1111 
np.random.seed(seed=seed) 

In [14]: cf = CarFactory() 
 
road = Street(num_lane, road_length, cf, dt=dt) 
 
for i in tqdm(range(iters)): 
    q_in = np.random.normal(flow_in, flow_in/2 ** 1/5, (1))[0] 
     
    road.vehicle_wait_ramp += q_in * dt 
     
    road.update(0, insert_on_last_lane=True, change_lanes=False) 

Out[14]:

In [15]: fig, axs = plt.subplots(2, 5, figsize=(30,15)) 
 
for i, state_idx in enumerate(range(0, 1000, 100)): 
    state = road.road_state[state_idx] 
    state_x = [s[0] for s in state] 
    state_y = [s[1] for s in state] 
    eps = 0.3 
    axs[int(i/5), i%5].set_title('Road state at {} timestep'.format(state_idx)) 
    axs[int(i/5), i%5].set_xlabel('Lane') 
    axs[int(i/5), i%5].set_ylabel('Distance (m)') 
    axs[int(i/5), i%5].set_xlim(0 - eps, num_lane - 1 + eps) 
    axs[int(i/5), i%5].set_xticks(range(0, num_lane)) 
    axs[int(i/5), i%5].set_ylim(0, road_length) 
    axs[int(i/5), i%5].scatter(state_x, state_y, s=6, marker='^') 

Out[15]:



Simulating a ramp
The simulation below demonstrates a six-lane freeway to serve as one of the simulations utilizing
the proof-of-concept simulation model for the interchange. This serves as a more complex model
compared to a road, and more reflective of the lanes of the interchange. This specific simulation
below utilizes a ramp on its own without any ramp metering system implemented with the purpose
of showing the effects of free ramping. This will serve as the ground basis proof-of-concept for
comparison to the ramp metering systems to come.

In [2]: # Simulation parameters 
 
num_lane = 6 
road_length = 500 # 5 km 
ramp_length = 30 # 30m 
ramp_position = 100 # place ramp 100m into the road 
r_prev = 1 
dt = 0.1 
 
k_r = 70 / 3600 
 
highway_flow_in = 10 
ramp_flow_in = 0.5 
 
seed = 1111 
np.random.seed(seed=seed) 

In [17]: %%time 
 
cf = CarFactory() 
 
pre_ramp_highway = Street(num_lane, ramp_position, cf, dt=dt) 
post_ramp_highway = Street(num_lane, road_length - ramp_position, cf, dt=dt) 
ramp = Street(1, 30, cf, dt=dt) 
 
ramp_queue = [] 
 
for i in tqdm(range(36000)): 
    highway_q_in = np.random.normal(highway_flow_in, highway_flow_in/2 ** 1/5, (1))[0] 
    ramp_q_in = np.random.normal(ramp_flow_in, ramp_flow_in/2 ** 1/5, (1))[0] 
 
    pre_ramp_highway.update(highway_q_in, insert_on_last_lane=False) 
    post_ramp_highway.vehicle_wait += pre_ramp_highway.vehicle_out 
    pre_ramp_highway.vehicle_out -= pre_ramp_highway.vehicle_out 
 
    ramp.update(ramp_q_in) 
    post_ramp_highway.vehicle_wait_ramp += ramp.vehicle_out 
    ramp.vehicle_out -= ramp.vehicle_out 
 
    post_ramp_highway.update(0, insert_on_last_lane=True) 
 
    ramp_queue.append((i, ramp.vehicle_out)) 
     
 



Wall time: 5min 16s 

0.0 

Here we observe that the ramp queue is constantly at 0 cars for the entire simulation, which is
expected. With this simulation we want to show the effect of not applying a ramp metering policy as
a baseline for later comparison.

#     if i > 1000 and i % 1000 == 0: 
#         post_ramp_highway.report() 
#         print('cars at ramp', ramp.vehicle_out, 'cars waiting to be dequeued', post_r

Out[17]:

In [18]: plt.close() 
plt.scatter(np.array(ramp_queue)[:,0], np.array(ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Queue') 
plt.show() 
print(np.array(ramp_queue)[:,1].mean()) 

Out[18]:

In [19]: vels = [] 
for i, state in enumerate(post_ramp_highway.road_state_vel): 
    if len(state) == 0: 
        continue 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[19]:



5.563748972261837

It is observed that velocity oscillates around the mean of 5.56 m/s over the time steps, with a few
spikes of relatively higher or lower velocities compared to the mean. From here, it is evidenced that
at a slower velocity level that traffic is relatively dense.

ALINEA + simple example
ALINEA served as a ramp metering strategy that utilized an efficient and robust implementation for
our simulation. It's main motivation lies in obtaining a desired freeway occupancy. The following
equation was utilized for ALINEA in obtaining a ramp metering rate  for a control period :

 represents the desired occupancy threshold, and  represents the measured occupancy at
time t.  signifies a constant that acts as a regulatory parameter. Below is the function
implemented to utilize ALINEA.

The ALINEA forumula is linear in nature. SO in turn, we should see a linear relation between the
desired occupancy threshold, , and the ramp metering rate . An increase in the value of 

 should lead to a decrease in  as reflected in the formula, and vice versa. A plot can
reflect this negative linear relationship.

Out[19]:

r(t) t

r(t) = r(t − 1) + Kr[O − Oout(t)]

O Oout(t)

Kr

In [20]: # r_prev : previous iteration's ramp metering rate in vehicles/second 
# k_r : regulatory rate for smoothing. Recommended value of 70/3600 vehicles per second
# o_thres: desired occupancy threshold (vehicles/meter) 
# o_out: measure occupancy in vehicles per meter 
 
#return value: the ramp metering rate in vehicles/second 
def ALINEA(r_prev, k_r, o_thres, o_out): 
    r_new = r_prev + k_r*(o_thres - o_out) 
    return r_new if r_new > 0 else 0  
     

Oout(t) r(t)

Oout(t) r(t)

In [21]: o_thres = road_length / (LEN_CAR * S0_INIT * 2)



The behavior of this figure is expected and helps to confirm prior assumptions from looking at the
analytical representation of ALINEA that it is linear. This in turn could potentially lead to a build up
of of cars that are on the ramp during simulation due to the fact that the ramp metering rate
decreases over time.

The simulation below will confirm this hypothesis by implementing ALINEA unto a simple 6-lane
road with arbitrary flow data.

o_out = len(pre_ramp_highway.road_state[1000]) +len(post_ramp_highway.road_state[1000]) 
 
x = np.linspace(0, o_thres *2, 100) 
y = [ALINEA(1, 70/3600, o_thres, pt) for pt in x] 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
 
plt.scatter(x, y); 

Out[21]:

In [22]: %%time 
# Simulation parameters 
 
num_lane = 6 
road_length = 500 # 5 km 
ramp_length = 30 # 30m 
ramp_position = 100 # place ramp 100m into the road 
r_prev = 1 
dt = 0.1 
 
k_r = 70 / 3600 
 
highway_flow_in = 10 
ramp_flow_in = 0.5 
 
seed = 1111 
np.random.seed(seed=seed) 
 
cf = CarFactory() 
 
pre_ramp_highway = Street(num_lane, ramp_position, cf, dt=dt) 
post_ramp_highway = Street(num_lane, road_length - ramp_position, cf, dt=dt) 



Wall time: 5min 45s 

To look into analysis of the execution, the ramp metering rate over time was plotted through the
simulation time. It can be observed that the ramp metering rate decreased overtime during the
initial period of the simulation until it entered a steady oscillation at a lower ramp metering rate.

ramp = Street(1, 30, cf, dt=dt) 
 
o_thres = 18.5 
 
r_hist = [] 
ramp_queue = [] 
 
for i in tqdm(range(36000)): 
    highway_q_in = np.random.normal(highway_flow_in, highway_flow_in/2 ** 1/5, (1))[0] 
    ramp_q_in = np.random.normal(ramp_flow_in, ramp_flow_in/2 ** 1/5, (1))[0] 
 
    pre_ramp_highway.update(highway_q_in, insert_on_last_lane=False) 
    post_ramp_highway.vehicle_wait += pre_ramp_highway.vehicle_out 
    pre_ramp_highway.vehicle_out -= pre_ramp_highway.vehicle_out 
 
    ramp.update(ramp_q_in) 
     
    try: 
        b = np.array(post_ramp_highway.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 
    except: 
        o_out = r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        r_new = ALINEA(r_prev, k_r, o_thres, o_out) 
        r_hist.append((i, r_new))    
        r_prev = r_new 
         
    if ramp.vehicle_out >= r_prev * dt: 
        ramp.vehicle_out -= r_prev * dt 
        post_ramp_highway.vehicle_wait_ramp += r_prev * dt 
    post_ramp_highway.update(0, insert_on_last_lane=True) 
 
    ramp_queue.append((i, ramp.vehicle_out)) 
     
 
#     if i > 1000 and i % 1000 == 0: 
#         post_ramp_highway.report() 
#         print('cars at ramp', ramp.vehicle_out, 'cars waiting to be dequeued', post_r

Out[22]:

In [24]: plt.close() 
plt.scatter(np.array(r_hist)[:,0], np.array(r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 
print(np.array(r_hist)[:,1].mean()) 



0.3758941344778255 

Let's next analyze the number of vehicles in the ramp queue over time to observe the behavior.

61.69712367669829 

It is observed that right as the time the ramp metering rate decreased to an oscillating steady low
state, the queue of the ramp increases in size significantly and continues to increase. This is in line
with our theoretical assumption. As the arrival rate of cars lies in a normal distribution, the arrival
rate shouldn't deviate from the amount expected significantly. With a lower ramp metering rate, it
should be seen that the queue increases as vehicles continue to enter the ramp system and the exit
rate from the system becomes lower.

Out[24]:

In [25]: plt.close() 
plt.scatter(np.array(ramp_queue)[:,0], np.array(ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(ramp_queue)[:,1].mean()) 

Out[25]:

In [26]: vels = [] 
for i, state in enumerate(post_ramp_highway.road_state_vel): 
    if len(state) == 0: 
        continue 



5.633168752446347

The velocities of the vehicles on the highway system tend to follow a fluctuated rate centered at
around the mean velocity of the vehicles of the system: 5.633168752446347 meters per second. At a
relatively slow rate, it can be seen that the traffic is rather dense and congested. This was the
intention based on our parameters, as we wanted to evaluate the buildup in the traffic from a dense
crowd of vehicles. Hence, the value for the arrival flow rate into the highway is relatively high at 10
vehicles/second.

ALINEA with Ramp Queue Consideration +
Simple Simulation Example
The following is a modified version of the ALINEA implementation where a new set of variables are
introduced into ALINEA that depend on the number of cars in the ramp queue. This in turn will
cause an increase in the ramp metering rate if the number of cars in the ramp queue is above a
certain threshold that we define.

 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[26]:

Out[26]:

In [27]: #return value: the ramp metering rate in vehicles/second 
def ALINEA_q(r_prev, k_r, o_thres, o_out, q_thresh, q_out): 
    q_weight = q_out - q_thresh # num cars over threshold, need to queue them  
    if q_weight < 0: 
        q_weight = 0 
    r_new = r_prev + k_r*((o_thres - o_out) + q_weight) / 2 
    return r_new if r_new > 0 else 0  
 



Text(0.5, 0, 'alinea_q')

From the 3-D visualization above, we can see that based on the ALINEA formula we present, despite
being at full occupancy value in the threshold we defined, vehicles will still be let in through the
ramp in order to alleviate problems that could occur with a substantially longer queue size. Let's
now implement the modified ALINEA method onto the same simulation scenario as before.

 
dat = [] 
x_o = np.linspace(0, 2, 100) 
x_q = np.linspace(0, 2, 100) 
 
for o in x_o: 
    for q in x_q: 
        dat.append((o, q, ALINEA_q(1, 70/3600, 1, o, 1, q))) 
 
dat = np.array(dat) 
         
fig = plt.figure() 
ax = plt.axes(projection='3d') 
ax.scatter(dat[:,0], dat[:,1], dat[:,2]) 
ax.set_xlabel('o') 
ax.set_ylabel('q') 
ax.set_zlabel('alinea_q') 

Out[27]:

Out[27]:

In [28]: %%time 
# Simulation parameters 
 
num_lane = 6 
road_length = 500 # 5 km 
ramp_length = 30 # 30m 
ramp_position = 100 # place ramp 100m into the road 
r_prev = 1 
dt = 0.1 
 
k_r = 70 / 3600 
 
highway_flow_in = 10 
ramp_flow_in = 0.5 
 
seed = 1111 



Wall time: 6min 1s 

Now that the simulation is complete, let's now analyze the various parameters of focus and compare
them to the original ALINEA method. The first parameter of focus is the ramp metering rate.

np.random.seed(seed=seed) 
 
cf = CarFactory() 
 
pre_ramp_highway = Street(num_lane, ramp_position, cf, dt=dt) 
post_ramp_highway = Street(num_lane, road_length - ramp_position, cf, dt=dt) 
ramp = Street(1, 30, cf, dt=dt) 
 
o_thres = 18.5 
q_thres = 5 
 
r_hist = [] 
ramp_queue = [] 
 
for i in tqdm(range(36000)): 
    highway_q_in = np.random.normal(highway_flow_in, highway_flow_in/2 ** 1/5, (1))[0] 
    ramp_q_in = np.random.normal(ramp_flow_in, ramp_flow_in/2 ** 1/5, (1))[0] 
 
    pre_ramp_highway.update(highway_q_in, insert_on_last_lane=False) 
    post_ramp_highway.vehicle_wait += pre_ramp_highway.vehicle_out 
    pre_ramp_highway.vehicle_out -= pre_ramp_highway.vehicle_out 
 
    ramp.update(ramp_q_in) 
     
    try: 
        b = np.array(post_ramp_highway.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 
    except: 
        o_out = r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        q_out = ramp.vehicle_out 
        r_new = ALINEA_q(r_prev, k_r, o_thres, o_out, q_thres, q_out) 
        r_hist.append((i, r_new)) 
        r_prev = r_new 
         
    if ramp.vehicle_out >= r_prev * dt: 
        ramp.vehicle_out -= r_prev * dt 
        post_ramp_highway.vehicle_wait_ramp += r_prev * dt 
 
    post_ramp_highway.update(0, insert_on_last_lane=True) 
     
    ramp_queue.append((i, ramp.vehicle_out)) 
     
 
#     if i > 1000 and i % 1000 == 0: 
#         post_ramp_highway.report() 
#         print('cars at ramp', ramp.vehicle_out, 'cars waiting to be dequeued', post_r

Out[28]:



0.46594344044038616

As seen in the figure, the mean ramp metering rate increases by approximately 0.10. This is
expected based on how the modified ALINEA method behaves. Let's next analyze the number of
vehicles in the ramp queue to see if this modified method results in an improvement.

3.8945050179282017 

This oscillatory behavior is an improvement from the original ALINEA method in that not only has
the mean number of cars in queue decreased significantly but the ramp metering rate's dependency

In [29]: plt.close() 
plt.scatter(np.array(r_hist)[:,0], np.array(r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 
np.array(r_hist)[:,1].mean() 

Out[29]:

Out[29]:

In [30]: plt.close() 
plt.scatter(np.array(ramp_queue)[:,0], np.array(ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(ramp_queue)[:,1].mean()) 

Out[30]:



on the number of cars in the ramp queue allows for a more dynamic behavior that works to address
the buildup that comes about in the ramp queue. Let's next analyze the velocity of the cars within
this simulation with the modified ALINEA method.

5.624896329655928

As one can see from the figure above and the mean velocity, there is a slight decrease in velocity
when implementing this modified method. However, this marginal decrease in velocity combined
with the significant decrease in the number of cars in the ramp queue serves as evidence and
confirmation that this modified ramp metering method has better performance when evaluating the
flow of traffic. The modified ALINEA method will be utilized in the simulation for the real world data
to come.

Observations and Discussion
Overall, the modified ALINEA method performs better on this simple example than the original
ALINEA method when taking into account the number of cars in the ramp queue and the average
velocity of cars in traffic. This is due to the fact that the modified ALINEA method has dynamic
behavior that is dependent on the number of cars in the ramp queue. Thus when implementing
these two ramp metering methods on the interchange, we expect that the modified ALINEA method
will perform better.

In [31]: vels = [] 
for i, state in enumerate(post_ramp_highway.road_state_vel): 
    if len(state) == 0: 
        continue 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[31]:

Out[31]:



Data Collection
The data collection process consisted of 3 key steps:

Selecting the site to collect either volume or speed data from the site.
Selecting a time-frame to retrieve data from depending on if the site is an active site that has
data over a long period of time or a temporary site that has data over a 3-day period.
Convert the file from ".xls" format to ".csv" to then parse through the data and collect an
average value for either volume or speed for every hour

The main challenge that arose during this process is that ".xls" files are not very friendly
programming-wise. This caused the need for a manual conversion of every file to ".csv" format.
Once that process is over, a script is ran that sifts through the file and develops an average value for
either speed of traffic volume depending on the file for each hour. In addition to splitting the data
by the hour, the data is also split by direction. For example, a file can be split by the traffic volume in
all directions, southbound, and northbound. The datatype is presented via double nested dictionary
where the first key is the file name that identifies the site and whether it is a speed or traffic volume
file. Once a dictionary is accessed via the filename key, the next keys are to identify the direction.
The the values within that key are numpy arrays that represent either the flow or speed for each
hour. The sites that data was retrieved from were specifically chosen in order to have an idea of
traffic flow and speed in all four directions that come in and out of the intersection of I-75 and I-
285. In addition, to analyzing the flow in and out of the intersection, they were also chosen to
analyze the flow through the intersection as a function of the varying the number of cars that enter
the road via the ramp meter. This allows us to vary how many cars can enter the ramp meter at a
certain time and analyze how this affects flow and speed throughout the intersection. Below is the
implementation of this data parsing.

In [32]: def data_parser(filename, by_sec=True): 
    with open(filename) as csv_file: 
        csv_reader = csv.reader(csv_file, delimiter=',') 
        keywords = ['direction', 'West','North','South','East','NB','SB','EB','WB'] 
        names = [] 
        data = {} 
        total = [] 
        it = 0 
        once = 0 
        drop = 'full' 
        for row in csv_reader: 
            x = row[0] 
            if any(word in x for word in keywords): 
                names.append(x) 
            if '00:00' in x: 
                vec = [] 
                for i in range(1,8): 
                    if row[i] != '': 
                        vec.append(float(row[i])) 
                if vec != []: 
                    total.append(np.mean(vec)) 
                elif once == 0: 
                    drop = it 



The data is good! 

Input Analysis
The following code below sets the stage for the flow rates at each direction of the interchange. This
is done through using the data provided by Georgia Department of Transportation where the flow
rate selected for each direction of the interchange is at 5pm local time. Once the flow rates are
extracted, they are then used to calculate the interchange probability so that it can be inputed into
the model.

                    once = 1 
                if '00:00:00' in x and 'speed' in filename: 
                    it += 1 
        total = np.array(total) 
        if drop != 'full': 
            del names[drop] 
        total = np.array_split(total,len(names)) 
         
        for ndx,name in enumerate(names): 
            data[name] = total[ndx] 
        return data 

In [33]: files = ['traffic_files/' + f for f in os.listdir('traffic_files/') if not f.startswith
 
data = {} 
for filename in files: 
    file_data = data_parser(filename) 
    data[filename.split('/')[1]] = file_data 
 
checker = [] 
for key in data: 
    for k in data[key]: 
        checker.append(len(data[key][k])) 
if len(set(checker)) == 1: 
    print('The data is good!') 
 
else: 
    print('The data has instances where the volume/speed for a direction does not have 
# os.chdir('/home/user/') 

In [34]: i285_south_in = data['067-2373_feb_2014.csv']['All Northbound'][17] / 3600  
i285_south_out = data['067-2373_feb_2014.csv']['All Southbound'][17] / 3600 
i285_north_in = data['121-5546_feb_2020.csv']['All Westbound'][17] / 3600 
i285_north_out = data['121-5546_feb_2020.csv']['All Eastbound'][17] / 3600 
i75_south_in = data['121-6370_feb_2020.csv']['All Northbound'][17] / 3600 
i75_south_out = data['121-6370_feb_2020.csv']['All Southbound'][17] / 3600 
i75_north_in = data['067-2738_feb_2016.csv']['All Southbound'][17] / 3600 
i75_north_out = data['067-2738_feb_2016.csv']['All Northbound'][17] / 3600 
i285_south_i75_north = data['067-9922_feb_2020.csv']['All Eastbound'][17] / 3600 
i285_south_i75_south = data['067-r081_july_2020.csv']['All Eastbound'][17] / 3600 
i285_south_i285_north = i285_south_in - i285_south_i75_south - i285_south_i75_north 
i75_north_i285_north = data['067-r601_oct_2020.csv']['All Southbound'][17] / 3600
i75_north_i285_south = data['067-r712_oct_2019.csv']['All Northbound'][17] / 3600
i75_north_i75_south = i75_north_in - i75_north_i285_north - i75_north_i285_south 



i75_north_out 0.08142744358831558 0.8323163827977257 0.08625617361395865 
i75_south_out 0.3508656595058194 0.5669064188122538 0.0822279216819269 
i285_north_out 0.7158097289105574 0.08751832022253463 0.19667195086690797 
i285_south_out 0.35271011580919703 0.22492117600138462 0.4223687081894184 
cumberland_ramp_out 0.29198258366405505 0.4277721904716021 0.2802452258643429 

I-75/I-285 Interchange
The following simulations implement the interchange of I-75 and I-285. The first simulation merely
just sets up the interchange using real world measured street lengths with no policy. From there the

i75_south_i285_north = data['067-r630_oct_2020.csv']['All Southbound'][17] / 3600
i75_south_i285_south = data['067_r003_oct_2020.csv']['All Northbound'][17] / 3600
i75_south_i75_north = i75_south_in - i75_south_i285_north - i75_south_i285_south 
i285_north_i285_south = i285_south_out - i75_north_i285_south - i75_south_i285_south 
i285_south_north_i75_north = data['067-9006_feb_2020.csv']['All Northbound'][17] / 3600 
i285_north_i75_north = i285_south_north_i75_north - i285_south_i75_north 
i285_north_i75_south = i285_north_in - i285_north_i75_north - i285_north_i285_south 
 
cumberland_ramp_in =  data['067_9109_feb_2020.csv']['All Eastbound'][17] / 3600 
i75_south_in_ramp_in = 0.5 
i75_north_in_ramp_in = 0.5 

In [35]: # Calculate interchange probability based on real-world densities. 
 
# i75_north_out 
i285_south_i75_north_prop = i285_south_i75_north / (i285_south_i75_north + i75_south_i7
i75_south_i75_north_prop = i75_south_i75_north / (i285_south_i75_north + i75_south_i75_
i285_north_i75_north_prop = i285_north_i75_north / (i285_south_i75_north + i75_south_i7
print('i75_north_out', i285_south_i75_north_prop, i75_south_i75_north_prop, i285_north_
 
# i75_south_out 
i285_north_i75_south_prop = i285_north_i75_south / (i285_north_i75_south + i75_north_i7
i75_north_i75_south_prop = i75_north_i75_south / (i285_north_i75_south + i75_north_i75_
i285_south_i75_south_prop = i285_south_i75_south / (i285_north_i75_south + i75_north_i7
print('i75_south_out', i285_north_i75_south_prop, i75_north_i75_south_prop, i285_south_
 
# i285_north_out 
i285_south_i285_north_prop = i285_south_i285_north / (i285_south_i285_north + i75_south_
i75_south_i285_north_prop = i75_south_i285_north / (i285_south_i285_north + i75_south_i
i75_north_i285_north_prop = i75_north_i285_north / (i285_south_i285_north + i75_south_i
print('i285_north_out', i285_south_i285_north_prop, i75_south_i285_north_prop, i75_nort
 
# i285_south_out 
i75_north_i285_south_prop = i75_north_i285_south / (i75_north_i285_south + i75_south_i2
i75_south_i285_south_prop = i75_south_i285_south / (i75_north_i285_south + i75_south_i2
i285_north_i285_south_prop = i285_north_i285_south / (i75_north_i285_south + i75_south_
print('i285_south_out', i75_north_i285_south_prop, i75_south_i285_south_prop, i285_nort
 
#cumberland_ramp_out 
cumberland_ramp_i285_north_prop = i285_north_out / (i285_north_out + i75_south_out + i7
cumberland_ramp_i75_north_prop = i75_north_out / (i285_north_out + i75_south_out + i75_
cumberland_ramp_i75_south_prop = i75_south_out / (i285_north_out + i75_south_out + i75_
print('cumberland_ramp_out', cumberland_ramp_i285_north_prop, cumberland_ramp_i75_north_



next simulation implements 3 ramps on the interchange and incoporates the ALINEA ramp metering
method where the 3 ramps are located on I-75 Northbound , I-75 Southbound , and I-285
Northbound. The I-75 Northbound and I-75 Southbound ramps simply enter the cars in the
respective highways. The I-285 Northbound ramp (Cumberland Ramp) however allows cars to enter
into I-75 South, I-75 North, and I-285 North. The results from this simulation are then compared to
a simulation that has the same scenario but uses the modified ALINEA method instead of the
original ALINEA method.

Base Simulation: No Policy
Given the modular nature of our road simulator, it is quite extensible to very complex systems. Here
we recreate from real measurements the general structure of the i75/i285 interchange. Becuase we
are studying the effects of ramp metering on flow, we decided to take some simplifications on the
amount of roads to simulate since we found that a completely accurate simulation would require
100+ road segments. So, we simplify the interchange into a form of black box, that is, each road
segment prior to the interchange splits some of it out flow into the other 2 directions of the
crossing highway, and preserves some of its flow to continue on through the interchange. We use
numerically derived proportions here to ensure we stay true to the real world.

Below is a visualization of the implementation of the interchange in a simplistic way. We create 13
road segments and treat the interchange as a black box, that is, the outflow of the inputs is directly
added to the outflow of the corresponding roads that cars could potentially travel. This allows us to
create a simpler simulation while still staying true to the real world.



In [36]: cf = CarFactory() 
dt = 0.1 
 
i285_south_in_road = Street(6, 3911, cf, dt=dt) 
i285_south_out_road = Street(6, 3911, cf, dt=dt) 
 
i285_north_in_road = Street(6, 1543, cf, dt = dt) 
i285_north_out_road = Street(6, 1543, cf, dt = dt) 
 
i75_south_in_preramp = Street(6, 568, cf, dt=dt) 
i75_south_in_postramp = Street(6, 320, cf, dt=dt) 
i75_south_in_ramp = Street(1, 50, cf, dt=dt) 
i75_south_out_road = Street(6, 888, cf, dt = dt) 
 
i75_north_in_preramp = Street(6,1018, cf, dt = dt) 
i75_north_in_postramp = Street(6, 752, cf, dt = dt) 
i75_north_in_ramp = Street(1, 50, cf, dt = dt) 
i75_north_out_road = Street(6, 1770, cf, dt = dt) 
 
cumberland_ramp = Street(1, 50, cf, dt = dt) 

In [37]: %%time 
 
# Simulation time 
for i in tqdm(range(36000)): 



     
    # hw input 
    i285_south_q_in = np.random.normal(i285_south_in, i285_south_in/2 ** 1/5, (1))[0] 
    i285_north_q_in = np.random.normal(i285_north_in, i285_north_in/2 ** 1/5, (1))[0] 
    i75_south_q_in = np.random.normal(i75_south_in, i75_south_in/2 ** 1/5, (1))[0] 
    i75_north_q_in = np.random.normal(i75_north_in, i75_north_in/2 ** 1/5, (1))[0] 
 
    # ramp input 
    i75_south_in_ramp_q_in = np.random.normal(cumberland_ramp_in, cumberland_ramp_in/2 
    i75_north_in_ramp_q_in = np.random.normal(i75_south_in_ramp_in, i75_south_in_ramp_i
    cumberland_ramp_q_in = np.random.normal(i75_north_in_ramp_in, i75_north_in_ramp_in/
     
     
    # i285 south 
    i285_south_in_road.update(i285_south_q_in, insert_on_last_lane=False) 
     
    # i285 north 
    i285_north_in_road.update(i285_north_q_in, insert_on_last_lane=False) 
     
    # i75 south 
    i75_south_in_preramp.update(i75_south_q_in, insert_on_last_lane=False) 
    i75_south_in_postramp.vehicle_wait += i75_south_in_preramp.vehicle_out 
    i75_south_in_preramp.vehicle_out -= i75_south_in_preramp.vehicle_out 
     
    i75_south_in_ramp.update(i75_south_in_ramp_q_in) 
    i75_south_in_postramp.vehicle_wait_ramp += i75_south_in_ramp.vehicle_out 
    i75_south_in_ramp.vehicle_out -= i75_south_in_ramp.vehicle_out 
     
    i75_south_in_postramp.update(0, insert_on_last_lane=True)  
     
    # i75 north 
    i75_north_in_preramp.update(i75_north_q_in, insert_on_last_lane=False) 
    i75_north_in_postramp.vehicle_wait += i75_north_in_preramp.vehicle_out 
    i75_north_in_preramp.vehicle_out -= i75_north_in_preramp.vehicle_out 
     
    i75_north_in_ramp.update(i75_north_in_ramp_q_in) 
    i75_north_in_postramp.vehicle_wait_ramp += i75_north_in_ramp.vehicle_out 
    i75_north_in_ramp.vehicle_out -= i75_north_in_ramp.vehicle_out 
     
    i75_north_in_postramp.update(0, insert_on_last_lane=True)  
     
    # cum ramp 
    cumberland_ramp.update(cumberland_ramp_q_in)     
     
     
    # i285 north out     
    i285_north_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i28
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i285_
     
    # i285 south out     
    i285_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i



    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_south_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i28
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i285_
     
    # i75 north out     
    i75_north_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_n
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i7
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i75_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_n
     
    # i75 south out     
    i75_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_s
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i7
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i75_south_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_s
     
    # cumberland ramping 
     
    i75_north_out_road.vehicle_wait += cumberland_ramp.vehicle_out * cumberland_ramp_i7
    cumberland_ramp.vehicle_out -= cumberland_ramp.vehicle_out * cumberland_ramp_i75_no
     
    i75_south_out_road.vehicle_wait += cumberland_ramp.vehicle_out * cumberland_ramp_i7
    cumberland_ramp.vehicle_out -= cumberland_ramp.vehicle_out * cumberland_ramp_i75_so
     
    i285_north_out_road.vehicle_wait += cumberland_ramp.vehicle_out * cumberland_ramp_i
    cumberland_ramp.vehicle_out -= cumberland_ramp.vehicle_out * cumberland_ramp_i285_n
     
     
    # remaining flow 
     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out 
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out 
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out 
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out 
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out 
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out 
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out 
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out 
     
    # update out roads 
     
    i285_south_out_road.update(0, insert_on_last_lane=False)  



Wall time: 2h 7s 

Let's now evaluate the velocities of the cars in all 4 directions at the interchange.

9.356918872637648

    i285_north_out_road.update(0, insert_on_last_lane=False)  
    i75_south_out_road.update(0, insert_on_last_lane=False)  
    i75_north_out_road.update(0, insert_on_last_lane=False)  
     
     
     
#     if i > 1000 and i % 1000 == 0: 
#         i285_south_out_road.report() 
#         i285_north_out_road.report() 
#         i75_south_out_road.report() 
#         i75_north_out_road.report() 
         
     
     

Out[37]:

In [38]: vels = [] 
for i, state in enumerate(i285_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[38]:

Out[38]:

In [39]: vels = [] 
for i, state in enumerate(i285_north_out_road.road_state_vel): 
    if len(state) == 0: 



10.486369814724696

        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[39]:

Out[39]:

In [40]: vels = [] 
for i, state in enumerate(i75_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[40]:



14.29628234346243

11.71392498743949

These velocities serve as a baseline for when the ramp metering policies are implemented to then
compare the predicted improvement that comes about when placing ramp meters into the
interchange.

Simulate with ALINEA

Out[40]:

In [41]: vels = [] 
for i, state in enumerate(i75_north_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[41]:

Out[41]:



Below demonstrates the interchange simulation utilizing the original ALINEA formulation, which is
applied to the three ramp meters.

In [42]: # Params 
cf = CarFactory() 
dt = 0.1 
 
# Road Definitions 
i285_south_in_road = Street(6, 3911, cf, dt=dt) 
i285_south_out_road = Street(6, 3911, cf, dt=dt) 
 
i285_north_in_road = Street(6, 1543, cf, dt = dt) 
i285_north_out_road = Street(6, 1543, cf, dt = dt) 
 
i75_south_in_preramp = Street(6, 568, cf, dt=dt) 
i75_south_in_postramp = Street(6, 320, cf, dt=dt) 
i75_south_in_ramp = Street(1, 50, cf, dt=dt) 
i75_south_out_road = Street(6, 888, cf, dt = dt) 
 
i75_north_in_preramp = Street(6,1018, cf, dt = dt) 
i75_north_in_postramp = Street(6, 752, cf, dt = dt) 
i75_north_in_ramp = Street(1, 50, cf, dt = dt) 
i75_north_out_road = Street(6, 1770, cf, dt = dt) 
 
cumberland_ramp = Street(1, 50, cf, dt = dt) 
 
 
# ALINEA Params 
k_r = 70 / 3600 
 
i75_south_o_thres = 18.5 
i75_south_r_prev = 1 
i75_south_r_hist = [] 
i75_south_ramp_queue = [] 
 
i75_north_o_thres = 18.5 
i75_north_r_prev = 1 
i75_north_r_hist = [] 
i75_north_ramp_queue = [] 
 
cumberland_o_thres = 18.5 
cumberland_r_prev = 1 
cumberland_r_hist = [] 
cumberland_ramp_queue = [] 
 
 
seed = 1111 
np.random.seed(seed=seed) 

In [43]: %%time 
 
# Simulation time 
for i in tqdm(range(36000)): 
     
     



    # hw input 
    i285_south_q_in = np.random.normal(i285_south_in, i285_south_in/2 ** 1/5, (1))[0] 
    i285_north_q_in = np.random.normal(i285_north_in, i285_north_in/2 ** 1/5, (1))[0] 
    i75_south_q_in = np.random.normal(i75_south_in, i75_south_in/2 ** 1/5, (1))[0] 
    i75_north_q_in = np.random.normal(i75_north_in, i75_north_in/2 ** 1/5, (1))[0] 
 
    # ramp input 
    i75_south_in_ramp_q_in = np.random.normal(cumberland_ramp_in, cumberland_ramp_in/2 
    i75_north_in_ramp_q_in = np.random.normal(i75_south_in_ramp_in, i75_south_in_ramp_i
    cumberland_ramp_q_in = np.random.normal(i75_north_in_ramp_in, i75_north_in_ramp_in/
     
     
    # i285 south 
    i285_south_in_road.update(i285_south_q_in, insert_on_last_lane=False) 
     
    # i285 north 
    i285_north_in_road.update(i285_north_q_in, insert_on_last_lane=False) 
     
    # i75 south 
    i75_south_in_preramp.update(i75_south_q_in, insert_on_last_lane=False) 
    i75_south_in_postramp.vehicle_wait += i75_south_in_preramp.vehicle_out 
    i75_south_in_preramp.vehicle_out -= i75_south_in_preramp.vehicle_out 
     
    i75_south_in_ramp.update(i75_south_in_ramp_q_in) 
     
    try: 
        b = np.array(i75_south_in_postramp.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 
    except: 
        o_out = i75_south_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        i75_south_r_prev = ALINEA(i75_south_r_prev, k_r, i75_south_o_thres, o_out) 
        i75_south_r_hist.append((i, i75_south_r_prev))    
         
         
    if i75_south_in_ramp.vehicle_out >= i75_south_r_prev * dt: 
        i75_south_in_ramp.vehicle_out -= i75_south_r_prev * dt 
        i75_south_in_postramp.vehicle_wait_ramp += i75_south_r_prev * dt 
     
    i75_south_in_postramp.update(0, insert_on_last_lane=True) 
     
    i75_south_ramp_queue.append((i, i75_south_in_ramp.vehicle_out)) 
     
    # i75 north 
    i75_north_in_preramp.update(i75_north_q_in, insert_on_last_lane=False) 
    i75_north_in_postramp.vehicle_wait += i75_north_in_preramp.vehicle_out 
    i75_north_in_preramp.vehicle_out -= i75_north_in_preramp.vehicle_out 
     
    i75_north_in_ramp.update(i75_north_in_ramp_q_in) 
     
    try: 
        b = np.array(i75_north_in_postramp.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 



    except: 
        o_out = i75_north_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        i75_north_r_prev = ALINEA(i75_north_r_prev, k_r, i75_north_o_thres, o_out) 
        i75_north_r_hist.append((i, i75_north_r_prev))    
         
         
    if i75_north_in_ramp.vehicle_out >= i75_north_r_prev * dt: 
        i75_north_in_ramp.vehicle_out -= i75_north_r_prev * dt 
        i75_north_in_postramp.vehicle_wait_ramp += i75_north_r_prev * dt 
     
    i75_north_in_postramp.update(0, insert_on_last_lane=True) 
     
    i75_north_ramp_queue.append((i, i75_north_in_ramp.vehicle_out)) 
     
     
    # cum ramp 
    cumberland_ramp.update(cumberland_ramp_q_in) 
     
    try: 
        a = np.array(i75_north_out_road.road_state[i-1]) 
        a = a[np.where(a[:,0] == max(a[:, 0]))] 
         
        b = np.array(i75_south_out_road.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
         
        c = np.array(i285_north_out_road.road_state[i-1]) 
        c = a[np.where(c[:,0] == max(c[:, 0]))] 
         
        o_out = cumberland_ramp_i75_north_prop * len(a) + cumberland_ramp_i75_south_pro
    except: 
        o_out = cumberland_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        cumberland_r_prev = ALINEA(cumberland_r_prev, k_r, cumberland_o_thres, o_out) 
        cumberland_r_hist.append((i, cumberland_r_prev))    
     
     
    # i285 north out     
    i285_north_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i28
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i285_
     
    # i285 south out     
    i285_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_south_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_



     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i28
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i285_
     
    # i75 north out     
    i75_north_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_n
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i7
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i75_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_n
     
    # i75 south out     
    i75_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_s
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i7
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i75_south_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_s
     
    # cumberland ramping     
    if cumberland_ramp.vehicle_out >= cumberland_r_prev * dt: 
        cumberland_ramp.vehicle_out -= cumberland_r_prev * dt 
        i75_north_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ram
        i75_south_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ram
        i285_north_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ra
         
    cumberland_ramp_queue.append((i, cumberland_ramp.vehicle_out)) 
     
    # remaining flow 
     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out 
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out 
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out 
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out 
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out 
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out 
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out 
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out 
     
    # update out roads 
     
    i285_south_out_road.update(0, insert_on_last_lane=False)  
    i285_north_out_road.update(0, insert_on_last_lane=False)  
    i75_south_out_road.update(0, insert_on_last_lane=False)  
    i75_north_out_road.update(0, insert_on_last_lane=False)  
     
     
#     if i > 1000 and i % 1000 == 0: 
#         i285_south_out_road.report() 



Wall time: 1h 58min 49s 

Below we can visualize the ramp metering rate at each respective time step on the ramp located at
I-75 South of the interchange.

The scatterplot shows a highly linear relationship between ramp metering rate and time. This shows
that the ramp metering rate goes unbounded as time inreases. Now let's look at the ramp metering
rate for the ramp located at I-75 North of the interchange.

#         i285_north_out_road.report() 
#         i75_south_out_road.report() 
#         i75_north_out_road.report() 
         
     
     

Out[43]:

In [44]: plt.close() 
plt.scatter(np.array(i75_south_r_hist)[:,0], np.array(i75_south_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 

Out[44]:

In [45]: plt.close() 
plt.scatter(np.array(i75_north_r_hist)[:,0], np.array(i75_north_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 

Out[45]:



From the visualization, we can see that ramp metering follows a parabolic pattern, with a peak right
before 5000 time steps, until it flattens out at 0 for the remainder of the simulation. This is indicative
that the ramp meter was unable to maintain the threshold and this likely caused a backup at the
ramp, which we will see below. Now we can take a look at the ramp located at I-285 South of the
interchange, also known as the Cumberland Ramp.

We can see a consistent dramatic increase in the ramp metering rate until around time step 8000, at
which the ramp metering rate flattens out.

Now let's look at the queue lengths for each of the ramps, in the respective order the ramp
metering rates were visualized.

In [46]: plt.close() 
plt.scatter(np.array(cumberland_r_hist)[:,0], np.array(cumberland_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 

Out[46]:

In [47]: plt.close() 
plt.scatter(np.array(i75_south_ramp_queue)[:,0], np.array(i75_south_ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 



3.5700247569446177 

The I-75 ramp metering queue shows relatively consistent overall increase throuhgout the
simulation as time goes on, so there's overall large amounts of backup. However, large fluctuations
occur throughout the simulation.

360.9239655053931 

On the ramp located at I-75 North of the interchange, it is clear that the ramp queue is nonexistent
until it steadily increases overtime. This follows the pattern of the ramp metering rate visualization,
as the ramp metering rate rests at a negligible rate right as the queue length starts to build up.

plt.show() 
print(np.array(i75_south_ramp_queue)[:,1].mean()) 

Out[47]:

In [48]: plt.close() 
plt.scatter(np.array(i75_north_ramp_queue)[:,0], np.array(i75_north_ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(i75_north_ramp_queue)[:,1].mean()) 

Out[48]:

In [49]: plt.close() 
plt.scatter(np.array(cumberland_ramp_queue)[:,0], np.array(cumberland_ramp_queue)[:,1]) 



0.8394344398709073 

On the Cumberland Ramp, we can see more feedback patterns, much like on the ramp on I-75
North of the interchange, but an overall consistent low value of the ramp queue. As evidenced the
ramp metering rate for this ramp, the metering rate flattens out at a consistent rate value. So, it is
sensible for the queue to flatten out likewise as evidenced here.

plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(cumberland_ramp_queue)[:,1].mean()) 

Out[49]:

In [50]: vels = [] 
for i, state in enumerate(i285_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[50]:



9.357609086394884

10.451989883480541

Out[50]:

In [51]: vels = [] 
for i, state in enumerate(i285_north_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[51]:

Out[51]:

In [52]: vels = [] 
for i, state in enumerate(i75_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 



17.106791485092007

    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[52]:

Out[52]:

In [53]: vels = [] 
for i, state in enumerate(i75_north_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[53]:



15.395179497747161

As the average velocities indicate, the implementation of ALINEA did lead to an overall increase in
average velocity and thus better traffic flow. However, this was at the expense of number of cars in
queue increasing. Thus, this next simulation focuses on addressing the ramp queue buildup by
implementing a modified ALINEA method. We expect that this will decrease the number of cars in
the ramp queue drastically while maintain a marginal difference in average velocity.

Simulate with ALINEA_q
The simulation of the interchange below utilizes the modified ALINEA formulation our group
designed. This formulation is applied to each of the ramp meters.

Out[53]:

In [54]: # Params 
cf = CarFactory() 
dt = 0.1 
 
# Road Definitions 
i285_south_in_road = Street(6, 3911, cf, dt=dt) 
i285_south_out_road = Street(6, 3911, cf, dt=dt) 
 
i285_north_in_road = Street(6, 1543, cf, dt = dt) 
i285_north_out_road = Street(6, 1543, cf, dt = dt) 
 
i75_south_in_preramp = Street(6, 568, cf, dt=dt) 
i75_south_in_postramp = Street(6, 320, cf, dt=dt) 
i75_south_in_ramp = Street(1, 50, cf, dt=dt) 
i75_south_out_road = Street(6, 888, cf, dt = dt) 
 
i75_north_in_preramp = Street(6,1018, cf, dt = dt) 
i75_north_in_postramp = Street(6, 752, cf, dt = dt) 
i75_north_in_ramp = Street(1, 50, cf, dt = dt) 
i75_north_out_road = Street(6, 1770, cf, dt = dt) 
 
cumberland_ramp = Street(1, 50, cf, dt = dt) 
 
 
# ALINEA Params 
k_r = 70 / 3600 
 
i75_south_o_thres = 18.5 
i75_south_r_prev = 1 
i75_south_q_thres = 5 
i75_south_r_hist = [] 
i75_south_ramp_queue = [] 
 
i75_north_o_thres = 18.5 
i75_north_r_prev = 1 
i75_north_q_thres = 5 
i75_north_r_hist = [] 
i75_north_ramp_queue = [] 
 
cumberland_o_thres = 18.5 
cumberland_r_prev = 1 



cumberland_q_thres = 5 
cumberland_r_hist = [] 
cumberland_ramp_queue = [] 
 
 
seed = 1111 
np.random.seed(seed=seed) 

In [55]: %%time 
 
# Simulation time 
for i in tqdm(range(36000)): 
     
     
    # hw input 
    i285_south_q_in = np.random.normal(i285_south_in, i285_south_in/2 ** 1/5, (1))[0] 
    i285_north_q_in = np.random.normal(i285_north_in, i285_north_in/2 ** 1/5, (1))[0] 
    i75_south_q_in = np.random.normal(i75_south_in, i75_south_in/2 ** 1/5, (1))[0] 
    i75_north_q_in = np.random.normal(i75_north_in, i75_north_in/2 ** 1/5, (1))[0] 
 
    # ramp input 
    i75_south_in_ramp_q_in = np.random.normal(cumberland_ramp_in, cumberland_ramp_in/2 
    i75_north_in_ramp_q_in = np.random.normal(i75_south_in_ramp_in, i75_south_in_ramp_i
    cumberland_ramp_q_in = np.random.normal(i75_north_in_ramp_in, i75_north_in_ramp_in/
     
     
    # i285 south 
    i285_south_in_road.update(i285_south_q_in, insert_on_last_lane=False) 
     
    # i285 north 
    i285_north_in_road.update(i285_north_q_in, insert_on_last_lane=False) 
     
    # i75 south 
    i75_south_in_preramp.update(i75_south_q_in, insert_on_last_lane=False) 
    i75_south_in_postramp.vehicle_wait += i75_south_in_preramp.vehicle_out 
    i75_south_in_preramp.vehicle_out -= i75_south_in_preramp.vehicle_out 
     
    i75_south_in_ramp.update(i75_south_in_ramp_q_in) 
     
    try: 
        b = np.array(i75_south_in_postramp.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 
    except: 
        o_out = i75_south_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        i75_south_r_prev = ALINEA_q(i75_south_r_prev, k_r, i75_south_o_thres, o_out, i7
        i75_south_r_hist.append((i, i75_south_r_prev))    
         
         
    if i75_south_in_ramp.vehicle_out >= i75_south_r_prev * dt: 
        i75_south_in_ramp.vehicle_out -= i75_south_r_prev * dt 
        i75_south_in_postramp.vehicle_wait_ramp += i75_south_r_prev * dt 
     



    i75_south_in_postramp.update(0, insert_on_last_lane=True) 
     
    i75_south_ramp_queue.append((i, i75_south_in_ramp.vehicle_out)) 
     
    # i75 north 
    i75_north_in_preramp.update(i75_north_q_in, insert_on_last_lane=False) 
    i75_north_in_postramp.vehicle_wait += i75_north_in_preramp.vehicle_out 
    i75_north_in_preramp.vehicle_out -= i75_north_in_preramp.vehicle_out 
     
    i75_north_in_ramp.update(i75_north_in_ramp_q_in) 
     
    try: 
        b = np.array(i75_north_in_postramp.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
        o_out = len(b) 
    except: 
        o_out = i75_north_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        i75_north_r_prev = ALINEA_q(i75_north_r_prev, k_r, i75_north_o_thres, o_out, i7
        i75_north_r_hist.append((i, i75_north_r_prev))    
         
         
    if i75_north_in_ramp.vehicle_out >= i75_north_r_prev * dt: 
        i75_north_in_ramp.vehicle_out -= i75_north_r_prev * dt 
        i75_north_in_postramp.vehicle_wait_ramp += i75_north_r_prev * dt 
     
    i75_north_in_postramp.update(0, insert_on_last_lane=True) 
     
    i75_north_ramp_queue.append((i, i75_north_in_ramp.vehicle_out)) 
     
     
    # cum ramp 
    cumberland_ramp.update(cumberland_ramp_q_in) 
     
    try: 
        a = np.array(i75_north_out_road.road_state[i-1]) 
        a = a[np.where(a[:,0] == max(a[:, 0]))] 
         
        b = np.array(i75_south_out_road.road_state[i-1]) 
        b = b[np.where(b[:,0] == max(b[:, 0]))] 
         
        c = np.array(i285_north_out_road.road_state[i-1]) 
        c = a[np.where(c[:,0] == max(c[:, 0]))] 
         
        o_out = cumberland_ramp_i75_north_prop * len(a) + cumberland_ramp_i75_south_pro
    except: 
        o_out = cumberland_r_prev 
     
     
    if i > 1000 and i % 50 == 0: 
        cumberland_r_prev = ALINEA_q(cumberland_r_prev, k_r, cumberland_o_thres, o_out, 
        cumberland_r_hist.append((i, cumberland_r_prev))    
     
     
    # i285 north out     



    i285_north_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i28
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i285_
     
    # i285 south out     
    i285_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i285_south_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i28
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i285_
     
    # i75 north out     
    i75_north_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_n
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out * i75_south_i7
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out * i75_south_
     
    i75_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_n
     
    # i75 south out     
    i75_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out * i285_north_i75_
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out * i285_north_i75_s
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out * i75_north_i7
    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out * i75_north_
     
    i75_south_out_road.vehicle_wait += i285_south_in_road.vehicle_out * i285_south_i75_
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out * i285_south_i75_s
     
    # cumberland ramping     
    if cumberland_ramp.vehicle_out >= cumberland_r_prev * dt: 
        cumberland_ramp.vehicle_out -= cumberland_r_prev * dt 
        i75_north_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ram
        i75_south_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ram
        i285_north_out_road.vehicle_wait_ramp += cumberland_r_prev * dt * cumberland_ra
         
    cumberland_ramp_queue.append((i, cumberland_ramp.vehicle_out)) 
     
    # remaining flow 
     
    i285_south_out_road.vehicle_wait += i285_north_in_road.vehicle_out 
    i285_north_in_road.vehicle_out -= i285_north_in_road.vehicle_out 
     
    i285_north_out_road.vehicle_wait += i285_south_in_road.vehicle_out 
    i285_south_in_road.vehicle_out -= i285_south_in_road.vehicle_out 
     
    i75_south_out_road.vehicle_wait += i75_north_in_postramp.vehicle_out 



Wall time: 1h 55min 32s 

Now we can look into the ramp metering rates for the ramps located at I-75 South of the
interchange, I-75 North of the interchange, and the Cumberland Ramp, respectively. It'll be
interesting to see the effects of ramp metering from the modified ALINEA formulation.

Like in the original ALINEA formulation for I-75 South of the interchange, the modified ALINEA
formulation, ALINEA_Q, demonstrates a positive linear relation between metering rate and time in
simulation.

    i75_north_in_postramp.vehicle_out -= i75_north_in_postramp.vehicle_out 
     
    i75_north_out_road.vehicle_wait += i75_south_in_postramp.vehicle_out 
    i75_south_in_postramp.vehicle_out -= i75_south_in_postramp.vehicle_out 
     
    # update out roads 
     
    i285_south_out_road.update(0, insert_on_last_lane=False)  
    i285_north_out_road.update(0, insert_on_last_lane=False)  
    i75_south_out_road.update(0, insert_on_last_lane=False)  
    i75_north_out_road.update(0, insert_on_last_lane=False)  
     
     
#     if i > 1000 and i % 1000 == 0: 
#         i285_south_out_road.report() 
#         i285_north_out_road.report() 
#         i75_south_out_road.report() 
#         i75_north_out_road.report() 
         
     
     

Out[55]:

In [56]: plt.close() 
plt.scatter(np.array(i75_south_r_hist)[:,0], np.array(i75_south_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 

Out[56]:



The trends for the ramp metering rate of I-75 North of the interchange follow generally along the
lines with the one from the original ALINEA formulation, with one notable exception. Instead of
flattening out at a negligible value, the ramp metering rate for the modified ALINEA formulation
oscillates at a continuous low value. This reflects a goal of the modified ALINEA formulation: to
avoid deadlocks that can occur in the ramp metering rate, and thus an absurd queue size should be
eliminated.

As in the original ALINEA formulation, the modified ALINEA formulation displays a nearly identical
trend in ramp metering rate. This is most likely due to the fact that this ramp can enter a vehicle into
3 different sections of the interchange and thus it is less dependent on the occupancy parameter of

In [57]: plt.close() 
plt.scatter(np.array(i75_north_r_hist)[:,0], np.array(i75_north_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 

Out[57]:

In [58]: plt.close() 
plt.scatter(np.array(cumberland_r_hist)[:,0], np.array(cumberland_r_hist)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Ramp Metering Rate') 
plt.show() 
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a single interstate. The next 3 figures focus on evaluating the number of cars in the ramp queue at
each respective ramp.

1.6752500462896731 

The results from this are as expected in that the modified ALINEA method led to a significant
decrease in the average number of cars in the ramp queue. More specifically the average number of
cars in ramp queue decreased from 3.57 to 1.63.

12.06918476242405 

In [59]: plt.close() 
plt.scatter(np.array(i75_south_ramp_queue)[:,0], np.array(i75_south_ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(i75_south_ramp_queue)[:,1].mean()) 

Out[59]:

In [60]: plt.close() 
plt.scatter(np.array(i75_north_ramp_queue)[:,0], np.array(i75_north_ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(i75_north_ramp_queue)[:,1].mean()) 

Out[60]:



The modified ALINEA method led to a drastic decrease in number of cars in the ramp queue at this
ramp in that the average number of cars in the ramp queue with the original method was around
360.93 and that value is 13.05 for this modified method.

0.7637076526056988 

The decrease in number of cars in the ramp queue is the least with respect to the other two ramps.
This is expected due the the ramp metering rate being very similar to the original method and the
fact that this ramp allows cars to enter 3 different sections of the interchange. Nevertheless, the
average number of cars in the ramp queue did decrease from 0.84 to 0.78. Let's next analyze the
velocities when implementing this new method.

In [61]: plt.close() 
plt.scatter(np.array(cumberland_ramp_queue)[:,0], np.array(cumberland_ramp_queue)[:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Number of Cars in Ramp Queue') 
plt.show() 
print(np.array(cumberland_ramp_queue)[:,1].mean()) 

Out[61]:

In [62]: vels = [] 
for i, state in enumerate(i285_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[62]:



9.609670010296103

10.081965430734698

Out[62]:

In [63]: vels = [] 
for i, state in enumerate(i285_north_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[63]:

Out[63]:

In [64]: vels = [] 
for i, state in enumerate(i75_south_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 



14.601119431975848

    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[64]:

Out[64]:

In [65]: vels = [] 
for i, state in enumerate(i75_north_out_road.road_state_vel): 
    if len(state) == 0: 
        continue 
 
    state_vel = list(np.array(state)[:,1]) 
    vels.append((i, np.array(state_vel).mean())) 
plt.close() 
plt.scatter(np.array(vels)[1000:,0], np.array(vels)[1000:,1]) 
plt.xlabel('Iterations') 
plt.ylabel('Velocity (m/s)') 
plt.show() 
np.array(vels)[:,1].mean() 

Out[65]:



15.052264850277965

As the figures indicate, there is a change in the average velocities at each section of the interchange.
This change is either a decrease or increase depending on the section. A comparative analysis of
these changes will be made in the observations and discussion sections as seen below.

Observations and Discussion
We ran these interchange simulations on an i7-5960x which took the following amount of time to
compute one hour's worth of simulation time at 0.1 second resolution:

Simulation Time hh:mm:ss

Base, no policy 02:00:07

ALINEA 02:04:48

ALINEA_q 02:15:36

The following tables illustrate the effects of the implementation of ALINEA and ALINEA_q onto the
simulation of the interchange when evaluating the average velocity and number of cars in the the
ramp queue.

No Policy ALINEA ALINEA_q

i75_south_out average velocity 9.356 9.357 9.609

i75_north_out average velocity 10.486 10.452 10.081

i285_south_out average velocity 14.296 17.106 14.601

i285_north_out average velocity 11.713 15.395 15.052

No Policy ALINEA ALINEA_q

i75_south_in_ramp average queue size 0 3.570 1.675

i75_north_in_ramp average queue size 0 360.92 12.069

cumberland_ramp average queue size 0 0.839 0.763

Looking at the base model, that is, the interchange without any form of ramp policy; we notice that
the average speed is fairly low at the four exit roads in the simulation. This is expected since there is
no form of control for queuing cars into the system. With the application of ALINEA, we see similar
results to what we observed in the simple example where the average speed greatly increases but at
the cost of an unbounded ramp queue. This is problematic for a variety of reasons, and the speed
increase is ultimately artificial since it is simply blocking cars from entering the road. Finally, with
ALINEA_q, we notice a balance of the ramp queue length and velocity when comparing all of the
roads. We notice two special output cases, both i75_south_out and i75_north_out, where a majority
of the speed remains unchanged. We hypothesize that this invariance is due to how congested
these roads already are, and the few cars added by ramping does not change the inherent flow very
much. In the i285 case, we notice that the velocities vary greatly, as the addition of a few cars can
drastically reduce the velocity.

Out[65]:



ALINEA_q outperforms ALINEA and the no policy model in balancing average speed and cars on the
road, essentially maximixing throughput.

Conclusion

With transportation systems becoming increasingly more congested in recent years, it is imperative
to find solutions to accomodate for a growing society. Ramp metering serves as not only a solution
but also as the optimal stepping stone towards ultimate free flow efficiency during all times of the
day. To analyze the effects of ramp metering, we undertook one of the most important aspects of
computational engineering: simulation analysis and design.

We introduce an object oriented design for accurate traffic simulation in order to model vehicle
ramping strategies. We identify an existing ramping policy, ALINEA, and propose a modification and
show empirical support for our modification. We analyze both the simulation and the policy on a
complex basis across the I-75/I-285 Interchange, which will each hold important attributes for
recording and analyzation. From there, the proof of concept demonstrated to you a simple instance
of a freeway to foreshadow the implementation of the interchange. The main portion of our report
demonstrates three models for experimentation on the effects of ramp metering: no ramp policy,
the original ALINEA formulation, and the modified ALINEA_Q formulation, using real-world data that
was publicly available to us in order to accurately undergo the simulations.

Our results were recorded and from our findings, we hope that the information presented can be of
beneficial use to transportation departments to make the most optimal use of ramp meters to
alleviate the problem of traffic congestion that has become so common in highly urbanized areas
across the United States.

More importantly, our group has reflected on a few aspects of the model which could be further
improved upon for future work. Our interchange is a simplified version of the actual interchange,
with all the road segments that are part of the interchange simplified to the 13 fundamental road
segments. Ideally, we would need around 100 total road segments in order to develop the most
accurate interchange and build a sophisticated representation of the flow of vehicles. This was
relatively unfeasible for our group due to the extreme amounts of computational power required
that was not readily avaliable to us. In addition, express lanes were ignored in our model but are
part of the real interchange, including functions to account for an express lane would further exalt
the simulation to a higher level of precision.

With all aspects considered, we as a group are proud of the efforts expended to undergo this
project, and we hope that not only will we take what we learned in the process of creating this
application towards future endeavors, but that the application itself would be beneficial towards the
betterment of the general public.
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